|
本帖最后由 邓文龙 于 2018-12-29 12:24 编辑
2018年糖尿病专题盘点
自身免疫致1型, 毒性蛋白质致2型糖尿病 免炎1毒蛋2
2018-12-25 10:53
2018年12月21日 讯 /生物谷BIOON/ --2018年即将过去,年末为大家献上生物谷本年度糖尿病专题盘点,希望读者朋友们能够喜欢。
1. Nature:利用细胞替换疗法治疗1型糖尿病取得重大进展!胞外基质组分决定着胰腺祖细胞的命运
DOI: 10.1038/s41586-018-0762-2
I型糖尿病是一种自身免疫性疾病,它会破坏胰腺中产生胰岛素的β细胞。当前的细胞替换疗法旨在利用人多能性干细胞制造出产生胰岛素的β细胞。
在一项新的研究中,来自丹麦哥本哈根大学的研究人员发现了决定胰腺中未成熟细胞---即胰腺祖细胞(pancreatic progenitor)---命运的信号。他们发现在发育中的胰腺内部,这些胰腺祖细胞是高度迁移性的,它们的命运受到它们的周围环境的影响:接触特定的胞外基质组分决定着它们的最终命运。这一突破性发现将有助于利用干细胞产生的胰岛β细胞治疗1型糖尿病。相关研究结果于2018年11月28日在线发表在Nature期刊上,论文标题为“Mechanosignalling via integrins directs fate decisions of pancreatic progenitors”。论文通讯作者为哥本哈根大学诺和诺德基金会干细胞生物学中心常务董事Henrik Semb教授。论文第一作者为哥本哈根大学的Anant Mamidi和Christy Prawiro。
胞外基质决定着胰腺祖细胞的命运
祖细胞类似于干细胞,这是因为它们能够自我更新和分化为成熟的细胞类型。然而,相比于干细胞,它们的自我更新能力通常是有限的。在器官形成期间,祖细胞的动态行为使得很难研究它们。为了克服这个障碍,这些研究人员将源自人干细胞的胰腺祖细胞接种在散布着不同的基质蛋白的载玻片上。通过这种方法,他们能够研究每个胰腺祖细胞在不影响相邻细胞的情形下如何对它的周围环境作出反应。令人吃惊的是,他们发现不同胞外基质组分之间的相互作用改变胰腺祖细胞内的机械力。这些机械力是由位于细胞外的胞外基质和位于细胞内部的肌动蛋白细胞骨架之间的相互作用产生的。
胰腺祖细胞能够产生胰腺内分泌细胞和胰腺导管细胞(duct cell)。胰腺内分泌细胞包括胰腺中所有产生激素的细胞,比如位于胰岛内部的产生胰岛素的β细胞和产生胰高血糖素的α细胞,而胰腺导管细胞是位于胰腺导管内壁的上皮细胞。在这项新的研究中,这些研究人员发现接触胞外基质层粘连蛋白(laminin)会减少细胞内的机械力,从而指导胰腺祖细胞产生胰腺内分泌细胞。反之,接触纤连蛋白(fibronectin)会增加细胞内的械力,从而促进胰腺祖细胞产生胰腺导管细胞。
利用这种新鉴定出的胰腺祖细胞分化机制
通过详细分析胰腺祖细胞的分化机制,这些研究人员揭示了相应的信号通路的分子细节,这些研究结果对理解体内的胰腺发育具有生理学上的重要作用。Semb解释道,“我们如今能够利用靶向这个新鉴定出的机械信号通路中的特定组分的小分子抑制剂替换大量的根据经验得出的物质,特别是这些物质在当前的细胞分化过程中的作用模式在很大程度上是未知的。”
通过这种新策略,产生胰岛素的β细胞如今能够利用人多能性干细胞更加经济地和可靠地制造出来,以便在未来用于治疗糖尿病。Semb说,“我们的发现开辟了新领域,这是因为它解释了多能性祖细胞在器官形成过程中如何分化为不同的细胞类型。它还为我们提供了在实验室中重建这个分化过程的方法,以便更精确地产生在诸如1型糖尿病和神经退行性疾病之类的严重疾病中丢失或遭受损伤的细胞,用于未来的细胞替换疗法。”
https://www.nature.com/articles/s41586-018-0762-2
http://ctxy.bioon.com/xy/article_pc.html?id=6730751
2. Nature Protocols & Nature:科学家阐明肠道菌群和糖尿病发生之间的关联
DOI: 10.1038/s41596-018-0064-z
近日,一项刊登在国际杂志Nature Protocols上的研究报告中,来自厄勒布尔大学等机构的科学家们通过研究花费了10多年开发了一种新方法,该方法能研究肠道菌群代谢如何影响机体的健康;这种方法能用于代谢组学研究,即通过化学分析的方法来解析细胞代谢中数千种分子的详细信息。
2016年发表在Nature杂志上的一篇研究报告中,研究人员就利用这种方法阐明了肠道菌群代谢和糖尿病发生之间的关联;在这种新方法的帮助下,研究人员就能对来自一份血液样本中的的2000种代谢产物进行分析,代谢产物是一种在机体代谢过程中形成的微型分子,包括氨基酸、脂质和糖类分子等。
研究者Tuulia Hyotylainen教授说道,收集数据是进行分析的重要一步,但却并不总是像实际数据分析那样需要那么多时间,而且收集到的大量数据还需要与生物学和医学问题联系起来。这项研究中,研究人员就对其工作方法进行了详细描述,通常情况下,一篇科学论文的方法部分很难被其它研究人员所复制,特别是在具有大量数据的复杂研究中。科学方法和研究结果同样重要,因此利用可靠的方法来得到高质量的数据也是非常重要的。
文章中,研究人员阐明了幼儿机体的代谢如何影响其后期机体对谷蛋白耐受性的影响,在个体婴儿时期通过饮食接触谷蛋白之前,研究人员就能够观察到其机体脂质代谢的变化,相关研究结果或能帮助理解个体机体对谷蛋白耐受的机制,并且开发出新型策略来预防这种疾病发生。
目前研究人员正在调查个体生命早期暴露于多种环境污染物与其患1型糖尿病风险之间的关联;目前研究人员正在尝试寻找可用于诊断多种疾病的特殊生物标志物,同时他们也非常感兴趣研究机体肠道菌群到底会产生哪些代谢产物以及这些代谢产物如何影响机体的代谢能力。
最后研究者Matej Oresic表示,目前我们正在不断改进整个分析链,即从取样到数据分析的过程,这样就能够促进其他研究人员也使用这种方法开展相关研究。
3. Cell:揭示肠道菌群产生的咪唑丙酸导致2型糖尿病机制
Doi:10.1016/j.cell.2018.09.055.
近年来,肠道菌群(gut microbiota)与健康和几种疾病的病情有关。然而,仅少数研究探究了发生变化的肠道菌群是否能够直接影响疾病。
在一项新的研究中,来自瑞典哥德堡大学萨尔格伦斯卡学院的研究人员证实肠道菌群能够影响细胞对胰岛素作出反应的方式,因而能够导致2型糖尿病。相关研究结果于2018年10月25日在线发表在Cell期刊上,论文标题为“Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1”。
这些研究人员发现初治(treatment-naïve)的2型糖尿病患者的肠道菌群与组氨酸的不同代谢有关,其中组氨酸主要来源于饮食。这接着导致咪唑丙酸(imidazole propionate)形成。咪唑丙酸破坏细胞对胰岛素作出反应的能力。因此,降低细菌产生的咪唑丙酸数量可能成为一种治疗2型糖尿病患者的新方法。
论文通信作者、哥德堡大学分子医学教授Fredrik Bäckhed说,“咪唑丙酸并不导致所有的2型糖尿病,但是我们提出的一种可行的假设是一部分2型糖尿病患者可能受益于通过改变他们的饮食或改变他们的肠道菌群来降低这种物质的水平。”
这项新的研究包括对从肠道到肝脏的血管中的各种物质进行分析。这些研究人员随后鉴定出2型糖尿病患者中的咪唑丙酸浓度上升了。
通过使用粪便样本,他们也能够证实当添加组氨酸时,2型糖尿病患者的肠道菌群能够产生咪唑丙酸,但在无糖尿病的对照受试者中未发现这种机制。
这项新的研究包括5名2型糖尿病患者和10名无糖尿病对照受试者。随后,这些研究人员在一项涉及649人的大型研究中也证实了这一发现。他们接着研究了咪唑丙酸对葡萄糖代谢的影响,并发现这种分子通过直接激活蛋白p38γ来影响一种之前已知的与代谢相关疾病存在关联的信号通路。
Bäckhed 说,“我们的研究结果清楚地展示了肠道菌群与饮食之间的这种相互作用对我们了解代谢在健康和疾病中的作用是非常重要的。它们还表明,来自不同人的肠道细菌可产生完全不同的物质,这些物质可能在体内具有非常特殊的作用。”
4. Cell:二甲双胍的抗糖尿病作用机制研究取得新进展
DOI:10.1016/j.cell.2018.09.050.
在一项新的研究中,加拿大和英国的研究人员发现一线抗2型糖尿病药物二甲双胍可能如何协助细胞更好地摄取和使用葡萄糖。他们的研究可能也解释了二甲双胍在预防包括癌症在内的多种慢性疾病中存在着的其他潜在有益作用。相关研究结果于2018年10月25日在线发表在Cell期刊上,论文标题为“Changes of cell biochemical states are revealed in protein homomeric complex dynamics”。
为了证实二甲双胍似乎让细胞表现得好像缺乏必需的矿物质铁,这些研究人员使用一种新方法来同时探测细胞中的所有生化过程如何对一种药物的存在作出反应。他们发现二甲双胍对细胞中的铁分布具有全局影响,导致重要的生化过程发生变化。
让这一发现成为可能的新技术是在论文主要作者、加拿大蒙特利尔大学生物化学教授Stephen Michnick的实验室里开发的。Michnick说,“如果你想知道一种药物或任何其他分子在体内的作用,那么你需要立即研究它在细胞中发生的一切。如今有几种方法能够做到这一点,但我们的称为hdPCA的方法具有执行简单、容易理解、非侵入性和廉价的优点;它几乎可以在任何实验室中完成。”该方法经部署后可快速地预测和确认一种药物如何影响细胞并同时鉴定出当将这种药物引入人体时可能具有的不利因素。
论文第一作者、蒙特利尔大学生物化学家Bram Stynen补充道,“我们选择使用二甲双胍,主要是因为它是一个有趣的测试用例,没有明确的作用机制。二甲双胍对铁稳态(iron homeostasis)的影响是这项研究的成果之一。人们之前已猜测铁代谢和糖尿病之间存在关联,但是没有人曾证实二甲双胍在活细胞中发挥的特异性抗糖尿病作用与铁稳态相关。”英国弗朗西斯-克里克研究所生物化学家Markus Ralser补充道,“这很有意义---葡萄糖代谢很可能是从铁依赖性化学反应中进化出来的---这种化学关系在进化过程中没有消失。”
还需要进一步开展细胞和动物研究,来确定二甲双胍的铁缺乏模拟效果对葡萄糖代谢的重要性,以及如何可能更好地利用这种机制来改善糖尿病治疗。
5. Nat Commun:通过阻断肝脏中特殊RNA沉默蛋白的功能有望抑制肥胖和糖尿病发生
DOI: 10.1038/s41467-018-05870-6
肥胖及其相关疾病,比如2型糖尿病和脂肪肝给全球公共卫生带来了巨大的负担,近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自辛辛那提儿童医学中心的科学家们通过研究发现,阻断小鼠肝脏中RNA沉默蛋白就能够防止小鼠患上肥胖和糖尿病。
这项研究中,研究人员通过遗传工程化剔除了小鼠肝脏中名为Ago2(Argonaute 2)的蛋白质,Ago2能够控制细胞中RNA的沉默机制,从而影响机体的能量代谢;当Ago2对肝脏中的RNA沉默后,其就会减缓小鼠机体的代谢以及肝脏对高脂肪饮食的处理能力。当研究者剔除了小鼠肝脏中的Ago2后他们发现,这并不会给小鼠带来毒性作用,但却会稳定小鼠机体的能量代谢,这就能够有效帮助抑制机体肥胖,并且有效预防小鼠患上糖尿病和脂肪肝等疾病,这些疾病会损害帮助机体有效排出有毒物质的重要器官的功能。
研究者Takahisa Nakamura博士说道,尽管这是一项基础科学研究,但我们认为这对于未来在临床中治疗多种慢性代谢性疾病具有重要的转化价值,比如糖尿病、脂肪肝和其它肥胖相关的疾病等,同时也能够帮助研究人员寻找潜在的新型治疗手段,帮助改变肥胖患者机体中的能量平衡并且帮助调节相关疾病的发展进程。
研究者表示,本文研究尚处于初级阶段,相关研究结果仍然需要再实验室模型中进行额外的研究和验证,并且开发出一种实用的治疗方法来在临床状况下抑制患者机体中的Ago2的功能。当研究人员对肝脏中基因表达水平和其分子靶点进行一系列筛查和分析后,他们鉴别出了Ago2蛋白,通过剔除对肝脏代谢非常关键的特定蛋白质后(比如AMPK),研究者分析了野生型小鼠和遗传修饰小鼠进行高脂肪饮食所产生的变化。
最后研究者Nakamura表示,这项研究中我们鉴别出了Ago2在连接肝脏中蛋白质翻译节点、能量产生和消耗节点以及AMPK活性表现上的关键角色,而这些事件出现干扰或被破坏或许是肥胖及其相关疾病发生的一个共同的特征。
6. Cell Metablism:为什么减重有利于糖尿病的缓解?
最近一项临床试验表明半数的II型糖尿病患者在接受了减重干预疗法之后症状得到了明显的患者,相关结果发表在最近一期的《Cell Metabolism》杂志上。这一结果表明减重能够提高胰腺Beta细胞的功能。由于此前研究认为II型糖尿病患者体内的胰岛Beta细胞出现了不可逆的功能丧失,因此该研究是该领域的一项突破。
“这一发现对于未来的临床研究以及治疗具有深远的影响”,该研究的作者,来自Newcastle大学的Roy Taylor说道:“目前我们对于II型糖尿病患者的早期治疗手段包括药物治疗以及生活方式的改变,而我们的数据则表明通过大幅降低体重能够有助于胰岛细胞功能的康复”。
在这项研究中,作者通过对II性糖尿病患者进行减重干预疗法。一年之后,一半左右的减肥成功的患者都出现了血糖水平好转的趋势。为了探究其中的原因,作者等人检测了相关的代谢因子,例如肝脏脂肪含量,胰腺脂肪含量,甘油三酯血液浓度以及beta细胞功能等等。结果显示,减重效果明显的患者群体上述指标更低。
总之,这些接轨表明体重减轻能够使得II型糖尿病患者的脂肪代谢趋于正常水平,快速的beta细胞缺失则会导致患者难以回到非糖尿病的状态。
“这一发现表明II型糖尿病是可以缓解的,主要原因是胰腺beta细胞的重新分化。对于这一现象背后的机制还需要进一步的研究揭示”,作者们说道。
|
|