|
2#

楼主 |
发表于 2017-12-26 19:53:26
|
只看该作者
本帖最后由 顾汉现 于 2017-12-26 19:54 编辑
【9】Nature:CRISPR–Cas9技术出问题了?其或许无法得到与古老技术完全匹配的结果
新闻阅读:CRISPR studies muddy results of older gene research
Jason Sheltzer,一位来自冷泉港实验室的癌症生物学家,目前他正在寻找参与肿瘤生长的基因,他和同事们计划利用当前最流行的基因编辑工具—CRISPR–Cas9使得基因失活,随后寻找那些能够降低癌细胞扩增比率的改变,但他们首先需要得到一个能够产生相同效应的控制基因。
名为MELK的基因似乎是最理想的,有大量证据表明该基因对于癌细胞增殖非常重要,而且目前正在进行的临床试验也在检测能够抑制MELK蛋白的新型药物;但利用CRISPR–Cas9技术使基因失活后并没有产生任何效应,这似乎就不太利于实验进一步深入地进行下去了,而这或许也会让目前进行的一切实验停止。
带着这个疑问和结果,研究者Sheltzer和其研究团队加入到了一个扩大的实验室研究计划中,该实验室的研究目的就是对实验进行重复和再评估,CRISPR–Cas9技术的广泛使用无意中也揭开了此前利用古老技术所收集到的数据的错误和偏差;4月3日,Sheltzer在美国癌症研究协会年度会议(AACR)上阐述了他们的研究结果,该研究结果已于近日发表在了国际杂志eLife上。斯坦福大学的研究者Michael Bassik指出,目前我们还有大量的工作要做,仅仅是利用其它的方法来重复相同的实验,从公平的角度而言,我觉得我们可以得到更好的数据和结果。
【10】Nature:免疫疗法为何仅对一些癌症有疗效?关键在于蛋白SLAMF7
doi:10.1038/nature22076
如果我们的免疫系统能够治愈癌症,将会是怎么样?这个假设太过简单而不是真实的,但是它成为一种新出现的癌症疗法(即免疫疗法)的基础。加拿大蒙特利尔临床研究所研究员、蒙特利尔大学医学院教授André Veillette博士针对这个快速发展的领域,在Nature期刊上发表了一篇标题为“SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin”的论文。Veillette博士和他的团队发现为何免疫疗法在一些病人体内有疗效,而且其他病人体内是无疗效的:SLAMF7分子起着支配作用。
免疫疗法:癌症治疗中的一个新出现的领域
我们的免疫系统含有杀死微生物和其他入侵者的巨噬细胞、T细胞和自然杀伤细胞。但是癌细胞利用多种策略成功地欺骗这些英勇的战士。免疫疗法的作用就是让这些策略失效,并且提供许多显著的益处。不同于化疗和放疗等更加侵入性的疗法的是,它靶向癌细胞,并且能够不伤害健康的细胞。
【11】Nature:癌症免疫疗法靶向实体瘤新突破
DOI:10.1038/nature22311
基于T细胞的免疫疗法对于癌症的治疗提供了巨大的希望:在针对血液癌症的初期试验中已经取得了初步成功。然而,对于实体瘤的治疗来说目前仍然十分困难。最近发表在《Nature》杂志上的一项研究指出,IFN-gamma-T细胞分泌的一类信号分子能够切断肿瘤组织的血液供应,因而对于实体瘤治疗效果具有重要的影响。
免疫系统是机体抵抗疾病的有力武器,因此科学家们一直在寻找方法利用免疫系统攻击癌症。如今,研究者们找到了合适的方法。举例来说,通过将T细胞从患者体内分离出来,进行一系列的"训练",再导入患者体内,能够有效地杀伤肿瘤细胞。这一技术在初期临床试验中已经取得了成功,但仅仅局限于无法形成肿瘤块的癌症类型,例如血液癌症。
【12】Nature:里程碑突破!首次在实验室利用人多能性干细胞制造出造血干细胞
doi:10.1038/nature22370
在一项新的研究中,来自美国波士顿儿童医院等研究机构的研究人员首次在实验室中利用能够产生体内几乎任何一种细胞类型的多能性干细胞制造出人造血干细胞。这一进展为研究血液疾病的根本原因和利用病人自己的细胞产生用于治疗目的的免疫匹配性血细胞开辟新的途径。相关研究结果于2017年5月17日在线发表在Nature期刊上,论文标题为“Haematopoietic stem and progenitor cells from human pluripotent stem cells”。
论文通信作者、波士顿儿童医院干细胞移植项目主任George Daley博士说,“我们非常接近于在培养皿中产生真正的人造血干细胞。这项研究是20多年努力的结果。”
尽管利用这些多能性干细胞制造出的细胞是真正的造血干细胞和其他的细胞(即造血祖细胞)的混合物,但是当移植到小鼠体内时,它们能够产生多种类型的人血细胞。
【13】Nature:从结构上揭示CRISPR-Cpf1的DNA靶向机制
doi:10.1038/nature22398
在一项新的研究中,来自丹麦哥本哈根大学的研究人员发现了一种新的被称作Cpf1的分子剪刀如何让DNA解链,并对它进行切割。这个CRISPR-Cas家族成员表现出较高的准确性,能够像全球定位系统(GPS)那样发挥作用以便鉴定出基因组中的靶位点。Cpf1的高精准度将会改进这种技术在修复基因损伤、其他医学应用和生物技术应用上的使用。
这些研究人员成功地可视化观察和描述了Cpf1的工作方式。这种蛋白属于Cas家族,能够切割双链DNA,因而允许启动这种基因组修饰过程。相关研究结果发表在2017年6月22日的Nature期刊上,论文标题为“Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage”。论文通信作者为哥本哈根大学研究员Guillermo Montoya和Stefano Stella。
Montoya解释道,这种新的分子剪刀“因极其精准地识别靶DNA序列,将能够让我们更加安全地修饰和编辑写在基因组上的指令。”
【14】Nature:重磅!首次发现疟原虫能够感知宿主热量摄入来不断调整生长模式
doi:10.1038/nature23009
尽管疟疾每分钟都会杀死一名儿童,但大部分的感染者依然都能够存活,目前每年大约有2亿名疟疾感染新发患者,日前,一项刊登在国际杂志Nature上的研究报告中,来自里斯本药物分子研究所的研究人员通过研究发现了疟原虫的关键感染因子,这种感染因子能够帮助疟原虫感知并且适应宿主机体的营养状态,利用疟疾感染的小鼠模型进行研究,研究人员发现,减少30%卡路里摄入的小鼠机体中疟原虫的载量会发生明显下降。
每隔48个小时疟原虫都会在红细胞中复制再生,这项研究中研究人员首次通过研究发现,疟原虫的复制率依赖于宿主所消化的卡路里,这或许最终能够指示疟疾感染患者的预后表现情况。研究者Maria M. Mota表示,这项研究改变了我们对疟疾感染动态学变化的理解,同时对于开发有效应对疟疾感染的新型措施提供了新的思路。最初的调查结果让研究者们大吃一惊,曾经有好几个月研究者Mota对疟原虫快速适应宿主的模式表示吃惊。
【15】Nature:重大突破!利用奶牛快速产生HIV广谱中和抗体
doi:10.1038/nature23301
科学家们长期以来就在寻求一种会引起HIV广谱中和抗体(broadly neutralizing antibodies, bNAb)产生的HIV疫苗,这被认为是阻止众多HIV病毒毒株感染的关键。但是这被证实是一项困难的任务;仅大约20%的HIV感染者产生这些抗体。根据一项新的研究,奶牛可能胜任这项任务。相关研究结果于2017年7月20日在线发表在Nature期刊上,论文标题为“Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows”。
在过去几年里,一些人已发现HIV广谱中和抗体往往是比较大的难以控制的蛋白。除了这一发现之外,其他的科学家们碰巧发现奶牛的抗体往往是类似地较大的和难以控制的。论文第一作者、国际艾滋病疫苗计划(International AIDS Vaccine Initiative)抗体发现与开发主任Devin Sok说,“这是通力合作的结果。我们当中有兽医、奶牛抗体科学家和HIV科学家,大家一起讨论和想法解决这个相对简单的问题。”
【16】两篇Nature:重磅!免疫检查点PD-L1与CMTM6狼狈为奸
doi:10.1038/nature23669 doi:10.1038/nature23643
当前的大多数癌症免疫疗法聚焦于PD-L1。在一项新的研究中,来自荷兰癌症研究所等研究机构的研究人员证实这种已得到充分研究的蛋白是由它的搭档CMTM6控制着的。作为一种之前未被研究的分子,CMTM6如今突然也成为一种潜在的治疗靶标。相关研究结果于2017年8月16日在线发表在Nature期刊上,论文标题为“Identification of CMTM6 and CMTM4 as PD-L1 protein regulators”。
免疫疗法是一种引人关注的新的癌症治疗方法。在人体中循环流通的T细胞(一种免疫细胞)应当会攻击和消灭它们遇到的任何癌细胞。然而,一些癌症已发现一种巧妙的方法来逃避这种命运:它们滥用T细胞表面上存在的一种天然的制动器。通过利用蛋白PD-L1结合这种所谓的检查点上,癌细胞让T细胞的杀伤能力失活。
【17】Nature:在人体中鉴定出上千种新的微生物群体
doi:10.1038/nature23889
人体微生物组(human microbiome)指的是数万亿种生活在人体表面上和内部的微生物。在一项针对人微生物组的新研究中,来自美国哈佛陈曾熙公共卫生学院、布罗德研究所、马里兰大学医学院和加州大学圣地亚哥分校的研究人员分析了来自人肠道、皮肤、口腔和阴道微生物组的上千种新的微生物群体,从而为这些微生物在人体健康中发挥的作用提供新的认识。
这项研究提交的数据比来自美国国家卫生研究院(NIH)人类微生物组计划(Human Microbiome Project)的数据增加了三倍,为人类微生物多样性提供了前所未有的深度和细节。这些新的信息允许人们识别出每个人含有的微生物所独有的差异(正如一些人基因组变异是每个人所独有的),并且在全身追踪它们随着时间的推移发生的变化。相关研究结果于2017年9月20日在线发表在Nature期刊上,论文标题为“Strains, functions and dynamics in the expanded Human Microbiome Project”。
论文通信作者、哈佛陈曾熙公共卫生学院计算生物学与生物信息学副教授Curtis Huttenhower说,“针对哪些微生物和分子过程有助维持人体微生物组健康,这项研究为我们提供了迄今为止最为详细的信息。”
【18】Nature:大牛张锋教授证实CRISPR–Cas13可靶向哺乳动物细胞中的RNA
doi:10.1038/nature24049
早在2016年,科学家们就发现了结合和切割单链RNA而不是DNA的CRISPR蛋白(Science, doi:10.1126/science.aaf5573)。如今,在一项新的研究中,来自美国麻省理工学院(MIT)的研究人员对这种被称作CRISPR-Cas13a的系统进行调整,使之在哺乳动物细胞中发挥作用。相关研究结果于2017年10月4日在线发表在Nature期刊上,论文标题为“RNA targeting with CRISPR–Cas13”。
在美国罗彻斯特大学开展RNA靶向CRISPR系统研究的Mitchell O’Connell(未参与这项研究)注意到,“在CRISPR之前,RNAi(RNA干扰)是调节基因表达的理想方法。但是Cas13a的重大益处之一是它似乎具有更强的特异性,而且这种系统对哺乳动物细胞而言并不是内源性的,因此你不太可能扰乱细胞中天然的转录后网络。相反,RNAi利用内源性机制开展基因敲降(gene knockdown,即抑制基因表达)。”
在这项新的研究中,来自MIT的张锋(Feng Zhang)教授和他的同事们证实切割RNA的Cas13a酶(之前称作C2c2)能够特异性地降低哺乳动物细胞中的内源性RNA和报告RNA水平。 这些研究人员已从多种细菌物种中寻找一种能够切割大肠杆菌报告基因的Cas13a酶。张峰教授和他的同事们着重关注来自细菌Leptotrichia wadei的Cas13a酶,这是因为经证实它最为高效地切割它的RNA靶标。
【19】Nature:重磅!KO皮肤细胞再生多年争论!利用转基因干细胞再生完整的人表皮
doi:10.1038/nature24487
多亏了一个由科学家和医生组成的国际团队,一名因患上一种危及生命的遗传病而丧失了大部分外层皮肤的7岁叙利亚难民如今在他的大约80%的身体上有了利用他自己的细胞培育出的转基因皮肤。而且正如该团队于2017年11月8日在Nature期刊上在线发表的一篇论文报道的那样,这名男孩表现良好。这篇论文的标题为“Regeneration of the entire human epidermis using transgenic stem cells”。
意大利圣拉斐尔科学研究所儿科教授Allessandro Aiuti(未参与这项研究)说,“这项研究深入地提供了关于皮肤干细胞的新信息,并且证实了这些干细胞治疗一种毁灭性疾病的巨大潜力。”
美国洛克菲勒大学皮肤科学家Elaine Fuchs(未参与这项研究)说道,“它是干细胞治疗领域的一个里程牌事件。此外,它还在解决表皮干细胞领域的一个愈演愈热的争议方面取得了相当大的进展。”特别地,这项新的研究阐明了皮肤细胞再生的方式,这一直是皮肤生物学家激烈讨论的话题。
【20】Nature:在抵抗HIV等病毒感染中,碱基拼写次序发挥着重要的作用
doi:10.1038/nature24039
数百万年来,人类和病毒一直都在不停地斗争:当我们的细胞进化出保护我们免受病毒攻击的方法时,这些病原体转而获得新的特性来避开这些防御。
如今,在一项新的研究中,来自美国洛克菲勒大学的研究人员发现我们的基因和很多病毒的基因存在的一种关键的相似性---一种拼写遗传密码的方式---可能让病毒逃避我们的细胞防御。领导这项研究的洛克菲勒大学教授Paul Bieniasz说,这项研究在开始时是为了理解病毒基因组如何影响HIV(导致获得性免疫缺乏综合征的病毒,俗称艾滋病病毒)的感染能力。相关研究结果发表在2017年10月5日的Nature期刊上,论文标题为“CG dinucleotide suppression enables antiviral defence targeting non-self RNA”。
英语中有一些单词的拼写能够发生变化而不改变它们的含义:比如colour和color,或者traveler和traveller。我们的基因组也是如此:组成我们的基因的分子代码有很多不同的拼写方式,但是这些不同的拼写并不改变这些基因产生的蛋白。但是Bieniasz和他的同事们发现对HIV和其他病毒而言,遗传密码中的某些拼写或者说某些特定的变体对病毒复制和感染至关重要。(生物谷Bioon.com)

(華成旅行最便宜 03-3833-9823)
华成旅行社 欢迎来电咨询:
电话:03-5688-1863 / 03-3833-9823
FAX :03-3833-9873 / 03-3834-5891
SOFTBANK电话:080-3084-4389 担当:小马 微信号:huacheng858
SOFTBANK电话:090-2172-4325 担当:小于 微信号:TYOSCL4325
SOFTBANK电话:080-3398-4381 担当:小郭 微信号:08034162275
SOFTBANK电话:080-3398-4387 担当:小李 微信号:huacheng4387
SOFTBANK电话:080-3398-4362 担当:小何 微信号:huacheng602
SOFTBANK电话:080-3398-4382 担当:小于 微信号:TYOSCL4325
http://www.kaseisyoji.com/forum.php?mod=forumdisplay&fid=10 |
|