注册 找回密码
搜索
查看: 975|回复: 0
打印 上一主题 下一主题

大脑越用越“废”?Nature发现神经元DNA修复机制 疾病研究

[复制链接]
跳转到指定楼层
1#
发表于 2023-3-9 10:09:44 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 顾汉现 于 2023-3-9 10:35 编辑

大脑越用越“废”?Nature发现神经元DNA修复机制,或推动相关疾病研究进展

NPAS4–NuA4 复合物将突触活动与 DNA 修复结合起来。相关的大脑活动会引发大量DNA的断裂,进而损伤神经元。

生物探索

2023/02/23
论文
论文标题:A NPAS4–NuA4 complex couples synaptic activity to DNA repair
作者:Pollina, Elizabeth A., Gilliam, Daniel T., Landau, Andrew T., Lin, Cindy, Pajarillo, Naomi, Davis, Christopher P., Harmin, David A., Yap, Ee-Lynn, Vogel, Ian R., Griffith, Eric C., Nagy, M. Aurel, Ling, Emi, Duffy, Erin E., Sabatini, Bernardo L., Weitz, Charles J., Greenberg, Michael E.

期刊:Nature
发表时间:2023/02/15
数字识别码:10.1038/s41586-023-05711-7
摘要:Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1,2,3,4,5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4–TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4–NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4–NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4–NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.

摘要翻译(由计算机程序完成,仅供参考,内容以英文原文为准):
神经元活动对适应性电路重塑至关重要,但在有丝分裂后神经元1、2、3、4、5的长寿命内对基因组的稳定性构成固有风险。神经元是否已经获得了专门的基因组保护机制,使其能够在高活动期承受数十年的潜在损伤性刺激,目前尚不清楚。在这里,我们确定了一种依赖于活性的DNA修复机制;其中一种新形式的NuA4–TIP60染色质修饰剂在激活的神经元中围绕可诱导的神经元特异性转录因子NPAS4组装。我们从大脑中纯化了这种复合物,并证明了它在引发神经元转录组和电路的活性依赖性变化方面的功能。通过表征大脑中活动诱导的DNA双链断裂的景观,我们发现NPAS4–NuA4与反复受损的调节元件结合,并招募额外的DNA修复机制来刺激其修复。NPAS4–NuA4结合的基因调控元件部分受到保护,防止体细胞突变的年龄依赖性积累。受损的NPAS4–NuA4信号传导导致细胞缺陷的级联,包括活性依赖性转录反应失调、神经元抑制失控和基因组不稳定,所有这些都会导致器官寿命缩短。此外,据报道,NuA4复合物的几种成分的突变会导致神经发育和自闭症谱系;混乱。总之,这些发现确定了一种神经元特异性复合物,该复合物将神经元活动与基因组保存直接耦合,其破坏可能导致发育障碍、神经退化和衰老。

所属学科:
神经科学
“用进废退”这句俗语广泛适用于从人体肌肉到思想的一切事物,随着年龄的增长,这种趋势会愈加明显。但当涉及大脑时,这种使用或许并不是一件好事。尽管脑细胞的使用确实可能有助于保持整个生命过程中的记忆和其他认知功能,但科学家却发现相关的大脑活动会引发大量DNA的断裂,进而损伤神经元。


基于此,我们想要知道的是,神经元如何在大脑中执行其重要工作的一生中保持健康和功能正常的呢?

近日,来自哈佛医学院的研究人员在Nature上发表了一篇题为“A NPAS4-NuA4 complex couples synaptic activity to DNA repair”的研究论文。该项研究发现了神经元中存在着一种独特的DNA修复机制,解释了为什么神经元在高强度重复工作的情况下仍然能够持续发挥作用。


图1 研究成果(图源:[1])

在人体内所有的细胞类型中,神经元是与众不同的,原因在于其不会再生或复制。日复一日,年复一年,它们不知疲倦地根据环境线索改造自己,确保大脑能够在一生中都能保持正常运行。这种重塑过程部分是通过激活大脑中基因转录的新程序来完成的,神经元使用这些程序将DNA转化为组装蛋白质的指令。但神经元中的这种活跃转录带来了高昂的代价,即这一过程加速了DNA的断裂,破坏了制造对细胞功能至关重要的蛋白质所需的遗传指令。

研究人员之一Daniel Gilliam表示,生物学层面上存在的这种矛盾,对神经元的功能及存活至关重要,但对细胞DNA也确实是存在伤害。他们开始对大脑如何平衡神经元的成本和收益感兴趣,对此,Pollina表示:“我们想知道神经元是否有特定的机制来减轻这种伤害,以便让我们保持思考、学习和记忆。”

在这项研究中,研究人员的注意力集中在转录因子NPAS4上,其功能由Michael Greenberg的实验室于2008年发现。NPAS4是一种已知对神经元具有高度特异性的蛋白质,它调节活动依赖性基因的表达,以控制兴奋性神经元对外界刺激的反应抑制。

研究人员在小鼠身上进行了一系列生化和基因组实验。首先,他们确定NPAS4作为由21种不同蛋白质组成的复合物的一部分存在,称为NPAS4-NuA4。研究人员发现,NPAS4-NuA4复合物在激活的神经元中组装以协调诱导基因转录并动态重组大脑中受刺激的神经元回路。

接下来,通过γH2AX ChIP-seq、sBLISS-seq 和 END-seq 对DNA损伤的独立测量表明NPAS4优先结合神经元中经历活性诱导DNA断裂的位点,同时还发现,NPAS4-NuA4结合位点是激活神经元中DNA损伤和修复的热点。


图2 NPAS4-NuA4结合位点随着可诱导转录的消退进行DNA修复(图源:[1])

试验数据表明,NPAS4-NuA4功能的破坏会导致活性依赖性基因表达失调、活性调节启动子和增强子处的DNA断裂增加、保护性修复机制的定位受损以及锥体神经元体细胞抑制缺陷。据此,研究人员推断,随着动物年龄的增长,NPAS4-NuA4复合物的破坏最终会产生广泛的长期后果。这些变化可能包括对基因组完整性、兴奋性/抑制性平衡和有机体寿命的有害影响。

值得注意的是,研究人员观察到这种神经元因子的缺失大大缩短了雄性和雌性小鼠的寿命,导致其中位寿命分别为12个月和11个月。种系Npas4基因敲除小鼠的寿命缩短特别是由于大脑中NPAS4的丢失,这一点得到了snRNA-seq数据的支持,该数据表明NPAS4对神经元具有高度特异性。

通过该项研究,研究人员确定了NuA4复合物的一种特殊神经元形式,它在激活的神经元中围绕NPAS4组装,以调节细胞类型特异性诱导转录并抑制DNA损伤。未来的研究将探索神经元用于修复活动引起的损伤的精确机制,包括那些由NPAS-4-NuA4介导的机制,这将是重要的研究领域。

研究人员之一的Greenberg渴望更深入地研究该机制的细节,以了解复合物中的每种蛋白质在做什么,涉及哪些其他分子,以及修复过程究竟是如何进行的。他表示下一步是在人类神经元中再次进行试验。

如果以上研究结果在人类身上再次得到证实,这些发现会让科学家们更加深入了解神经元如何以及为什么会随着衰老以及罹患神经退行性疾病而崩溃,还可以帮助科学家们制定策略以保护神经元基因组中易受损的其他区域,或治疗神经元DNA修复出现问题的疾病。

责编|木子久

校对|木子久

参考资料:

[1]Pollina EA, Gilliam DT, Landau AT, et al. A NPAS4-NuA4 complex couples synaptic activity to DNA repair. Nature. 2023 Feb 15. doi: 10.1038/s41586-023-05711-7. Epub ahead of print. PMID: 36792830.

更多精彩内容,请关注“生物探索”(biodiscover)

文章标签
神经元
DNA修复机制
NPAS4-NuA4
DNA断裂

https://www.nature.com/articles/s41586-023-05711-7

https://www.linkresearcher.com/t ... 4-94b0-6ac870507e81



华成旅行社  欢迎来电咨询:

电话:03-3833-9823  / 03-5688-1863
FAX :03-3833-9873  / 03-3834-5891

SOFTBANK电话:080-3416-2275   担当:小郭  微信号:08034162275
SOFTBANK电话:090-2172-4325   担当:小于  微信号:TYOSCL4325
SOFTBANK电话:080-3398-4387   担当:小李  微信号:huacheng4387
SOFTBANK电话:080-3523-4388   担当:小何  微信号:huacheng602
SOFTBANK电话:080-3084-4389   担当:小马  微信号:huacheng858

http://www.kaseisyoji.com/forum.php?mod=forumdisplay&fid=10

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关于都市网 | 服务条款 | 开放平台 | 广告服务 | 商务洽谈 | 都市网招聘 | 都市网公益 | 客服中心 | 网站导航 | 版权所有

手机版|小黑屋|Comsenz Inc.  

© 2001-2013 源码论坛 Inc.    Powered by Weekend Design Discuz! X3.2

GMT+8, 2024-11-23 08:17 , Processed in 0.124806 second(s), 18 queries .

快速回复 返回顶部 返回列表