|
2#
楼主 |
发表于 2021-10-14 16:12:21
|
只看该作者
本帖最后由 邓文龙 于 2021-10-14 16:29 编辑
参 考 文 献
1
Dolan R J. Emotion, cognition, and behavior. Science, 2002, 298(5596): 1191-1194 [百度学术]
2
Hattori R, Kuchibhotla K V, Froemke R C, et al. Functions and dysfunctions of neocortical inhibitory neuron subtypes. Nature Neuroscience, 2017, 20(9): 1199-1208 [百度学术]
3
Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 2016, 91(2): 260-292 [百度学术]
4
Ferguson B R, Gao W J. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits, 2018, 12: 37 [百度学术]
5
Hu H, Gan J, Jonas P. Interneurons. fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science, 2014, 345(6196): 1255263 [百度学术]
6
Defelipe J, Lopez-Cruz P L, Benavides-Piccione R, et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci, 2013, 14(3): 202-216 [百度学术]
7
Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 2008, 321(5885): 53-57 [百度学术]
8
Kawaguchi Y, Katsumaru H, Kosaka T, et al. Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Res, 1987, 416(2): 369-374 [百度学术]
9
Hippenmeyer S, Vrieseling E, Sigrist M, et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. Plos Biol, 2005, 3(5): e159 [百度学术]
10
Schlosser B, Klausa G, Prime G, et al. Postnatal development of calretinin- and parvalbumin-positive interneurons in the rat neostriatum: an immunohistochemical study. J Comp Neurol, 1999, 405(2): 185-198 [百度学术]
11
Qu G J, Ma J, Yu Y C, et al. Postnatal development of GABAergic interneurons in the neocortical subplate of mice. Neuroscience, 2016, 322: 78-93 [百度学术]
12
Song J, Sun J, Moss J, et al. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci, 2013, 16(12): 1728-1730 [百度学术]
13
Verdaguer E, Brox S, Petrov D, et al. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis. Exp Gerontol, 2015, 69: 176-188 [百度学术]
14
Zheng J, Li H L, Tian N, et al. Interneuron accumulation of phosphorylated tau impairs adult hippocampal neurogenesis by suppressing GABAergic transmission. Cell Stem Cell, 2020, 26(3): 331-345 [百度学术]
15
Zhang H, He X, Mei Y, et al. Ablation of ErbB4 in parvalbumin-positive interneurons inhibits adult hippocampal neurogenesis through down-regulating BDNF/TrkB expression. J Comp Neurol, 2018, 526(15): 2482-2492 [百度学术]
16
Yi Y, Song Y, Lu Y. Parvalbumin interneuron activation-dependent adult hippocampal neurogenesis Is required for treadmill running to reverse schizophrenia-like phenotypes. Front Cell Dev Biol, 2020, 8: 24 [百度学术]
17
Gulyas A I, Megias M, Emri Z, et al. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci, 1999, 19(22): 10082-10097 [百度学术]
18
Norenberg A, Hu H, Vida I, et al. Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci U S A, 2010, 107(2): 894-899 [百度学术]
19
Wilson N R, Runyan C A, Wang F L, et al. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature, 2012, 488(7411): 343-348 [百度学术]
20
Lee S H, Kwan A C, Zhang S, et al. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature, 2012, 488(7411): 379-383 [百度学术]
21
Cardin J A, Carlen M, Meletis K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 2009, 459(7247): 663-667 [百度学术]
22
Sohal V S, Zhang F, Yizhar O, et al. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 2009, 459(7247): 698-702 [百度学术]
23
王静, 李小俚, 邢国刚, 等. Gamma神经振荡产生机制及其功能研究进展. 生物化学与生物物理进展,2011, 38(08): 688-693 [百度学术]
Wang J, Li X L, Xing G G, et al. Progress in Biochemistry and Biophysics, 2011, 38(08): 688-693 [百度学术]
24
Holtzman D M, Morris J C, Goate A M. Alzheimer's disease: the challenge of the second century. Science Translational Medicine, 2011, 3(77): 77sr1 [百度学术]
25
Musiek E S, Holtzman D M. Three dimensions of the amyloid hypothesis: time, space and 'wingmen'. Nature Neuroscience, 2015, 18(6): 800-806 [百度学术]
26
Selkoe D J. Alzheimer's disease: genes, proteins, and therapy. Physiological Reviews, 2001, 81(2): 741-766 [百度学术]
27
Sinnen B L, Bowen A B, Gibson E S, et al. Local and use-dependent effects of beta-amyloid oligomers on NMDA receptor function revealed by optical quantal analysis. J Neurosci, 2016, 36(45): 11532-11543 [百度学术]
28
Hodson R. Alzheimer's disease. Nature, 2018, 559(7715): S1 [百度学术]
29
Mucke L, Selkoe D J. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med, 2012, 2(7): a006338 [百度学术]
30
Zallo F, Gardenal E, Verkhratsky A, et al. Loss of calretinin and parvalbumin positive interneurones in the hippocampal CA1 of aged Alzheimer's disease mice. Neurosci Lett, 2018, 681: 19-25 [百度学术]
31
Ali F, Baringer S L, Neal A, et al. Parvalbumin-positive neuron loss and amyloid-beta deposits in the frontal cortex of Alzheimer's disease-related mice. J Alzheimers Dis, 2019, 72(4): 1323-1339 [百度学术]
32
Mahar I, Albuquerque M S, Mondragon-Rodriguez S, et al. Phenotypic alterations in hippocampal NPY- and PV-expressing interneurons in a presymptomatic transgenic mouse model of Alzheimer's disease. Front Aging Neurosci, 2016, 8: 327 [百度学术]
33
Sanchez-Mejias E, Nunez-Diaz C, Sanchez-Varo R, et al. Distinct disease-sensitive GABAergic neurons in the perirhinal cortex of Alzheimer's mice and patients. Brain Pathol, 2020, 30(2): 345-363 [百度学术]
34
Yang X, Yao C, Tian T, et al. A novel mechanism of memory loss in Alzheimer's disease mice via the degeneration of entorhinal-CA1 synapses. Mol Psychiatry, 2018, 23(2): 199-210 [百度学术]
35
Hijazi S, Heistek T S, Scheltens P, et al. Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer's disease. Mol Psychiatry, 2019[Epub ahead of print](DOI: 10.1038/s41380-019-0483-4) [百度学术]
36
Grossberg G T, Tong G, Burke A D, et al. Present algorithms and future treatments for Alzheimer's disease. J Alzheimers Dis, 2019, 67(4): 1157-1171 [百度学术]
37
Povysheva N V, Johnson J W. Effects of memantine on the excitation-inhibition balance in prefrontal cortex. Neurobiol Dis, 2016, 96: 75-83 [百度学术]
38
Palop J J, Chin J, Roberson E D, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease. Neuron, 2007, 55(5): 697-711 [百度学术]
39
Selkoe D J. Early network dysfunction in Alzheimer's disease. Science, 2019, 365(6453): 540-541 [百度学术]
40
Verret L, Mann E O, Hang G B, et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 2012, 149(3): 708-721 [百度学术]
41
Palop J J, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci, 2016, 17(12): 777-792 [百度学术]
42
Busche M A, Eichhoff G, Adelsberger H, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease. Science, 2008, 321(5896): 1686-1689 [百度学术]
43
Busche M A, Chen X, Henning H A, et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A, 2012, 109(22): 8740-8745 [百度学术]
44
Grienberger C, Rochefort N L, Adelsberger H, et al. Staged decline of neuronal function in vivo in an animal model of Alzheimer's disease. Nature Communications, 2012, 3: 774 [百度学术]
45
Difrancesco J C, Tremolizzo L, Polonia V, et al. Adult-onset epilepsy in presymptomatic Alzheimer's disease: a retrospective study. J Alzheimers Dis, 2017, 60(4): 1267-1274 [百度学术]
46
刘运进,潘洪玉,孙秉贵. 老年痴呆症的突触和神经环路机制. 生命科学, 2014, 26(1): 15-26 [百度学术]
Liu Y J, Pan H Y, Sun B G. Chinese Bulletin of Life Sciences, 2014, 26(1): 15-26 [百度学术]
47
Takahashi H, Brasnjevic I, Rutten B P, et al. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer's disease. Brain Struct Funct, 2010, 214(2-3): 145-160 [百度学术]
48
Park K, Lee J, Jang H J, et al. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid beta oligomers. BMC Biol, 2020, 18(1): 7 [百度学术]
49
Ahnaou A, Moechars D, Raeymaekers L, et al. Emergence of early alterations in network oscillations and functional connectivity in a tau seeding mouse model of Alzheimer's disease pathology. Sci Rep, 2017, 7(1): 14189 [百度学术]
50
Soler H, Dorca-Arevalo J, Gonzalez M, et al. The GABAergic septohippocampal connection is impaired in a mouse model of tauopathy. Neurobiol Aging, 2017, 49: 40-51 [百度学术]
51
Levenga J, Krishnamurthy P, Rajamohamedsait H, et al. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun, 2013, 1: 34 [百度学术]
52
Davila-Bouziguet E, Targa-Fabra G, Avila J, et al. Differential accumulation of Tau phosphorylated at residues Thr231, Ser262 and Thr205 in hippocampal interneurons and its modulation by Tau mutations (VLW) and amyloid-beta peptide. Neurobiol Dis, 2019, 125: 232-244 [百度学术]
53
Owen M J, Sawa A, Mortensen P B. Schizophrenia. Lancet, 2016, 388(10039): 86-97 [百度学术]
54
Lee F H, Zai C C, Cordes S P, et al. Abnormal interneuron development in disrupted-in-schizophrenia-1 L100P mutant mice. Mol Brain, 2013, 6: 20 [百度学术]
55
Delevich K, Jaaro-Peled H, Penzo M, et al. Parvalbumin interneuron dysfunction in a thalamo-prefrontal cortical circuit in Disc1 locus impairment mice. eNeuro, 2020, 7(2): ENEURO.0496-19.2020 [百度学术]
56
Yin D M, Sun X D, Bean J C, et al. Regulation of spine formation by ErbB4 in PV-positive interneurons. J Neurosci, 2013, 33(49): 19295-19303 [百度学术]
57
Mao W, Watanabe T, Cho S, et al. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons. Eur J Neurosci, 2015, 41(8): 1025-1035 [百度学术]
58
邓潇斐, 郭建友. Parvalbumin阳性中间神经元缺陷在精神分裂症病理机制中的作用. 心理科学进展, 2018, 26(11): 1992-2002 [百度学术]
Deng X F, Guo J Y. Advances in Psychological Science, 2018, 26(11): 1992-2002 [百度学术]
59
Beasley C L, Reynolds G P. Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res, 1997, 24(3): 349-355 [百度学术]
60
Bitanihirwe B K, Lim M P, Kelley J F, et al. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry, 2009, 9: 71 [百度学术]
61
Pantazopoulos H, Lange N, Baldessarini R J, et al. Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry, 2007, 61(5): 640-652 [百度学术]
62
Zhang Z J, Reynolds G P. A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res, 2002, 55(1-2): 1-10 [百度学术]
63
Curley A A, Arion D, Volk D W, et al. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry, 2011, 168(9): 921-929 [百度学术]
64
Volk D, Austin M, Pierri J, et al. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry, 2001, 158(2): 256-265 [百度学术]
65
Gonzalez-Burgos G, Lewis D A. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull, 2012, 38(5): 950-957 [百度学术]
66
Malaspina D, Storer S, Furman V, et al. SPECT study of visual fixation in schizophrenia and comparison subjects. Biol Psychiatry, 1999, 46(1): 89-93 [百度学术]
67
Kraguljac N V, White D M, Reid M A, et al. Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry, 2013, 70(12): 1294-1302 [百度学术]
68
Rowland L M, Summerfelt A, Wijtenburg S A, et al. Frontal glutamate and gamma-aminobutyric acid levels and their associations with mismatch negativity and digit sequencing task performance in schizophrenia. JAMA Psychiatry, 2016, 73(2): 166-174 [百度学术]
69
Haig A R, Gordon E, De Pascalis V, et al. Gamma activity in schizophrenia: evidence of impaired network binding? Clin Neurophysiol, 2000, 111(8): 1461-1468 [百度学术]
70
Flynn G, Alexander D, Harris A, et al. Increased absolute magnitude of gamma synchrony in first-episode psychosis. Schizophr Res, 2008, 105(1-3): 262-271 [百度学术]
71
Del Pino I, Garcia-Frigola C, Dehorter N, et al. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron, 2013, 79(6): 1152-1168 [百度学术]
72
Spencer K M, Nestor P G, Niznikiewicz M A, et al. Abnormal neural synchrony in schizophrenia. J Neurosci, 2003, 23(19): 7407-7411 [百度学术]
73
Uhlhaas P J, Linden D E, Singer W, et al. Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. J Neurosci, 2006, 26(31): 8168-8175 [百度学术]
74
Mukherjee A, Carvalho F, Eliez S, et al. Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell, 2019, 178(6): 1387-1402 e1314 [百度学术]
75
Hunt M J, Kopell N J, Traub R D, et al. Aberrant network activity in schizophrenia. Trends Neurosci, 2017, 40(6): 371-382 [百度学术]
76
Gonzalez-Burgos G, Lewis D A. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull, 2008, 34(5): 944-961 [百度学术]
77
Lewis D A, Curley A A, Glausier J R, et al. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci, 2012, 35(1): 57-67 [百度学术]
78
Ma K, Mclaurin J. Alpha-melanocyte stimulating hormone as a potential therapy for Alzheimer`s disease. Curr Alzheimer Res, 2017, 14(1): 18-29 [百度学术]
79
Tong L M, Djukic B, Arnold C, et al. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Abeta accumulation. J Neurosci, 2014, 34(29): 9506-9515 [百度学术]
80
Iaccarino H F, Singer A C, Martorell A J, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 2016, 540(7632): 230-235 [百度学术]
81
Martorell A J, Paulson A L, Suk H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition. Cell, 2019, 177(2): 256-271. e222 [百度学术]
82
Gill K M, Grace A A. The role of alpha5 GABAA receptor agonists in the treatment of cognitive deficits in schizophrenia. Curr Pharm Des, 2014, 20(31): 5069-5076 [百度学术]
83
Shao H, Zhang Y, Dong Y, et al. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer's disease transgenic mice. J Alzheimers Dis, 2014, 41(2): 499-513 [百度学术]
84
Long J M, Holtzman D M. Alzheimer disease: an update on pathobiology and treatment strategies. Cell, 2019, 179(2): 312-339 [百度学术]
85
Beinat C, Banister S D, Herrera M, et al. The therapeutic potential of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists for the treatment of the cognitive deficits associated with schizophrenia. CNS Drugs, 2015, 29(7): 529-542 [百度学术]
86
Lewis A S, Van Schalkwyk G I, Bloch M H. Alpha-7 nicotinic agonists for cognitive deficits in neuropsychiatric disorders: a translational meta-analysis of rodent and human studies. Progress in N-psychopharmacology & Biological Psychiatry, 2017, 75: 45-53 [百度学术]
87
Abbas A I, Sundiang M J M, Henoch B, et al. Somatostatin interneurons facilitate hippocampal-prefrontal synchrony and prefrontal spatial encoding. Neuron, 2018, 100(4): 926-939.e3 [百度学术]
88
Tsubomoto M, Kawabata R, Zhu X, et al. Expression of transcripts selective for GABA neuron subpopulations across the cortical visuospatial working memory network in the healthy state and schizophrenia. Cereb Cortex, 2019, 29(8): 3540-3550 [百度学术]
89
Chung H, Park K, Jang H J, et al. Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid beta oligomers in vivo. Brain Struct Funct, 2020, 225(3): 935-954(DOI: 10.1007/s00429-020-02044-3) [百度学术]
http://www.pibb.ac.cn/pibbcn/article/html/20200054
华成旅行社 欢迎来电咨询:
电话:03-3833-9823 / 03-5688-1863
FAX :03-3833-9873 / 03-3834-5891
SOFTBANK电话:080-3416-2275 担当:小郭 微信号:08034162275
SOFTBANK电话:090-2172-4325 担当:小于 微信号:TYOSCL4325
SOFTBANK电话:080-3398-4387 担当:小李 微信号:huacheng4387
SOFTBANK电话:080-3523-4388 担当:小何 微信号:huacheng602
SOFTBANK电话:080-3084-4389 担当:小马 微信号:huacheng858
http://www.kaseisyoji.com/forum.php?mod=forumdisplay&fid=10
|
|