|
2#

楼主 |
发表于 2010-2-12 13:06:44
|
只看该作者
胎鼠大脑皮层神经干细胞的分离培养、分化及鉴定 2
胎鼠大脑皮层神经干细胞的分离培养、分化及鉴定 2
2 结果
2.1 NSCs的形态学特征及鉴定
由孕14 d胎鼠大脑皮层分离培养的原代细胞, 接种后立即在相差显微镜下观察,细胞呈悬浮的圆形状,边界清楚,折光性强,绝大部分单个存在。经6~7 d无血清加bFGF培养后,细胞呈球状集落, 95 %以上的NSCs球呈悬浮生长,细胞增殖旺盛(图1)。原代培养时,培养瓶中可见一些细胞碎片和一些贴壁的杂细胞,但经传代后,这些杂质均减少甚至消失,且生长状态良好。在相差显微镜下,NSCs呈球形或椭圆形,大小不一。经Nestin免疫荧光染色鉴定显示神经干细胞球呈红色荧光(图2)。
2.2 NSCs的诱导分化及其鉴定
胎鼠大脑皮层神经干细胞的分离培养、分化及鉴定在NSCs培养液中加入10%胎牛血清3 h后,NSCs球即开始贴壁和分化,6 h后即可明显发现有突起从团块边缘长出,24 h后有少数细胞分化为有突起的细胞,以后分化的细胞逐渐增多,从细胞球周围迁移出,呈放射状排列(图3);随着时间的推移,突起不断增粗与延长并互相连接成网状,7 d时在相差显微镜下NSCs球周围可见分化成胞体圆形丰满的神经元样细胞和突起粗大的胶质细胞样细胞。免疫荧光染色显示,在胎牛血清的诱导分化下NSCs能分化成表达各种相应特异性标志的终末细胞,即表达MAP2的神经元(图4)、表达GFAP的星形胶质细胞(图5);同时,从NSCs分化而来的神经元能表达突触素(图6)。
3 讨论
NSCs是指在哺乳动物中枢神经系统内具有多向分化潜能和自我复制能力的一群细胞,由于具有广阔的应用前景而受到神经科学领域众多研究者的关注,在治疗恶性胶质瘤、神经系统损伤、中枢神经系统慢性退行性疾病(帕金森病、亨廷顿病)等方面已取得丰硕的成果[6~8]。
NSCs在哺乳动物中枢神经系统内分布非常广泛,本实验从大脑皮层取材,采用机械分离法来制备NSCs悬液,实验效果比较理想。NSCs悬液的制备有酶消化法和机械分离法,但以酶消化法使用居多。由于在实际操作中很难从客观上准确地把握酶作用的最佳时间点,往往导致消化不足而不易获得单细胞悬液;或消化过度造成细胞受损而导致细胞活力下降甚至死亡。并且,在NSCs表面具有针对许多神经生长因子的受体[9],当采用酶消化法来获取NSCs时, 可能会引起细胞表面受损而致使一部分受体丢失,而这些受体对于NSCs 维持其干细胞的未分化状态是必需的。所以采用显微解剖和吸管吹打等机械分离方法来制备NSCs悬液是神经干细胞分离中较为理想的方法。
本实验发现在原代培养时,培养瓶中可见大量的细胞碎片和一些贴壁的细胞,但经传代3~5代后,这些杂质逐渐减少甚至消失。这主要是由于培养液中所含的bFGF只对NSCs具有促进分裂和增殖作用[10,11],而其他杂细胞在该培养液中无法生长。因此,原代细胞中大部分非NSCs会发生死亡,而NSCs不仅可以存活,还可以分裂和增殖,形成神经干细胞球,从而经过多次传代后, NSCs可以得到纯化。
Nestin是神经干细胞的一个标志物,本实验培养的细胞通过免疫荧光观察培养的细胞球均呈Nestin免疫反应阳性,提示组成细胞球的细胞为NSCs。当在培养液中加入10%的胎牛血清后,NSCs可以分化为神经元样细胞和胶质细胞样细胞。免疫荧光显示,诱导分化7 d后NSCs可以分化为表达MAP2的神经元和表达GFAP的星形胶质细胞,证明了NSCs具有多向分化潜能。同时,本研究观察到从NSCs诱导分化成的神经元突起上有分化较好的串珠样排列的膨体,突触素免疫荧光染色阳性,显示其已经具备接受信息的结构基础,表明分化的神经元能够合成和运输神经递质,行使可能的生理功能[12]。
实验从孕14 d胎鼠大脑皮层分离培养的细胞团具备NSCs的三大特征:Nestin免疫反应阳性、分裂增殖能力和多向分化潜能,由此证明了所分离培养的细胞是NSCs。并且,由血清诱导分化而来的神经元具备一定的生理功能,可以用于进一步的实验研究。
【参考文献】
[1]Davis A A, Temple S. A selfrenewing multipotenial stem cell in embryonic rat cerebral cortex[J]. Nature, 1994(6503): 263-266.
[2]Villa A, Snyder E Y, Vescovi A, et al. Establishment and properties of a growth factordependent perpetual neural stem cell line from the human CNS[J]. Exp Neurol, 2000(1): 67-84.
[3]谭新杰,胡长林,蔡文琴.新生大鼠海马神经干细胞的分离、培养、分化和鉴定. 国际脑血管病杂志[J],2006(2): 107-109.
[4]曹中伟,马虹,曾倩,等.大鼠胚胎脑组织神经干细胞培养和鉴定[J]。解剖学进展,2006(1):29-31.
[5]季丽莉,佟雷,王振宇.神经干细胞的生物学特性和体外培养鉴定[J]. 解剖学进展,2007(2):180-183.
[6]Aleksandrova MA,Podgornyi OV,Marei MV,et al.Characteristics of human neural stem cells in vitro and after transplantation into rat brain [J].bull Exp Bio lMed,2005(1):114-120.
[7]Ogawa Y,Sawamoto K,Miyata T,et al.Transplation of in vitroexpanded fetal neural neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats [J].J Neurosci Res,2002(6):925-933.
[8]Eslamboli A,Georgievska B,Ridvey RM,et al.Continuous lowlevel gliney cell linederivedneurotrophic factor delivery using recombine adenoassociated viral rectors provides neuron protection and induces behavioral recovery in primate model of Parkionsons disease [J].J Neurosci,2005(4):769-777.
[9]Kallos MS, Behie LA, Vescovi AL. Extended serial passaging of mammalian neural stem cells in suspension bioreactors[J]. Biotech Bioeng, 1999(5): 589-599.
[10]Kuhn HG, Winkler J, Kempermann G, et al. Epidermal growth factor and fibroblast growth factor2 have different effects on neural progenitors in the adult rat brain[J]. J Neurosci, 1997(15): 5820-5829.
[11]Kitchens DL, Snyder EY, Gottlieb DI. FGF and EGF are mitogens for immortalized neural progenitors[J]. J Neurobio, 1994(7): 797-807.
[12]王增贤,王怀经,李镇中,等. 体外培养乳鼠海马神经元的扫描电镜观察[J]. 解剖学杂志,2003 (2):152-155.
 |
|