|
本帖最后由 邓文龙 于 2019-11-2 13:30 编辑
2019年10月Cell期刊不得不看的亮点研究
2019-10-31 21:47
2019年10月31日讯/生物谷BIOON/---2019年10月份即将结束了,10月份Cell期刊又有哪些亮点研究值得学习呢?小编对此进行了整理,与各位分享。
1.Cell:开发出光学混合筛选技术,可在几天内筛选人细胞中的数千个基因
doi:10.1016/j.cell.2019.09.016
如今,在一项新的研究中,来自美国麻省理工学院和布罗德研究所的研究人员开发出一种方法,该方法将大规模混合筛选与基于图像的细胞行为分析相结合。这种称为光学混合筛选(optical pooled screen)的方法允许人们在空间和时间分辨率下研究基因如何影响细胞过程,而其他的混合筛选方法则无法做到这一点。相关研究结果发表在2019年10月17日的Cell期刊上,论文标题为“Optical Pooled Screens in Human Cells”。论文通讯作者为布罗德研究所核心研究所成员、麻省理工学院生物工程系副教授Paul Blainey博士。论文第一作者为Blainey 实验室博士后研究员Avtar Singh和Blainey 实验室物前理学博士生David Feldman。基因编辑大牛张锋(Feng Zhang)也是这篇论文的共同作者。
图片来自Cell, 2019, doi:10.1016/j.cell.2019.09.016。
Singh说,“通过这种新方法,任何人都可以在无需专门设备的情况下使用显微镜在几天内筛查数千个基因。”
这些研究人员通过对数百万个细胞中一种称为p65的蛋白的细胞位置进行成像,研究了952个基因对一种称为NF-kB的免疫调节复合物的信号转导活性的影响。他们发现了两个基因---MED12和MED24---在NFkB信号弛豫过程中的新作用。
2.Cell:从拓扑学角度揭示DNA复制之谜
doi:10.1016/j.cell.2019.09.034
生命分子存在缠绕的现象。但是,DNA双螺旋中那两条熟悉的链是如何在没有缠绕的情况下成功复制的,这就很难解释了。在一项新的研究中,来自美国康奈尔大学的研究人员从拓扑学角度解决了这个问题。他们研究了这种双螺旋形状对DNA复制的影响。通过使用真核生物作为模型系统,他们发现染色质(由DNA、组蛋白和非组蛋白等成分组成)的内在机械性能决定着染色质纤维如何缠绕。相关研究结果发表在2019年10月17日的Cell期刊上,论文标题为“Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity”。
在DNA复制过程--复制体(replisome)将两条DNA链分开并向前移动---中,DNA也必须绕双螺旋轴缠绕。这会让DNA承受很大的扭转应力(torsional stress),从而导致DNA发生额外的扭曲。问题在于:额外的扭曲在哪里发生?如果额外的扭曲仅发生在复制体的正面,那么两个子DNA分子将不会缠绕在一起,因此它们可以分开。但是,如果额外的扭曲发生在复制体的背面,那么两个子DNA分子将缠绕在一起,无法分开。这将为细胞分裂过程中的染色体分离创造一个主要问题,这可能导致DNA损伤并导致细胞死亡或癌症。
这些研究人员发现,缠绕单条染色质纤维比缠绕双条染色质纤维要容易得多。这意味着额外的扭曲将优先发生在复制体的正面,从而让两个子DNA分子之间的缠绕最小化。在一个单独的实验中,他们发现,一种能解开双螺旋DNA的酶(拓扑异构酶II)强烈偏爱正面的单条染色质纤维。染色质机械性能和拓扑异构酶活性似乎以协同方式协调,以减少子DNA分子之间的缠绕。
3.Cell:重大进展!开发出比CAR-T细胞更安全、用途更广的cCAR-T细胞技术
doi:10.1016/j.cell.2019.10.002
在一项新的研究中,来自美国格拉斯通研究所和Xyphos生物科学公司(Xyphos Biosciences, Inc.)的研究人员描述了一种攻击被HIV感染的细胞的新技术。这种新技术是CAR-T细胞免疫疗法的一种新的改进版本。近年来,这种疗法因在抵抗血癌上取得的成功而闻名于世。通过改进使得它具有更大的覆盖范围和多功能性,这种称为convertibleCAR T细胞(cCAR-T)的新技术在多个治疗领域显示出了巨大的前景,特别是在抗击HIV方面,这是因为它可以用来缩小在接受抗逆转录病毒疗法(ART)期间HIV感染者体内持续存在的受感染细胞的库存量。相关研究结果于2019年10月24日在线发表在Cell期刊上,论文标题为“Attacking Latent HIV with convertibleCAR-T Cells, a Highly Adaptable Killing Platform”。论文通讯作者为格拉斯通研究所HIV治愈研究中心主任Warner C. Greene博士。
图片来自Cell, 2019, doi:10.1016/j.cell.2019.10.002。
人们已证实传统的CAR-T细胞在诱导血癌(比如淋巴瘤和儿童白血病)缓解方面非常成功。但是作为抵抗HIV感染的疗法,传统的CAR-T细胞并不完美。论文第一作者、Greene实验室科学家Eytan Herzig说,“传统的CAR-T细胞的一些缺点是它们经过基因改造后靶向癌细胞表面上的单个分子,而且一旦被注射到患者体内,无法对它们进行控制。”
Xyphos生物科学公司通过从细胞毒杀伤细胞中分离出靶向抗体克服了这些缺陷。该公司首席科学家David W. Martin博士解释说:“我们对cCAR-T细胞进行了基因改造,使得这些T细胞可以在其表面上表达受到少量修饰的人类受体蛋白NKG2D。”这种受到修饰的NKG2D受体当与它的搭档结合时,可以将这些T细胞变成有效的杀手。它的搭档是一种叫做MIC-A的蛋白质,Xyphos生物科学公司的科学家对它进行了裁剪和修饰,使得它可以与cCAR-T细胞表面上这种经过修饰的NKG2D受体特异性结合。这些科学家随后将它与靶向抗体的底部融合在一起,从而构建出他们称为MicAbody的产物。因此,这种靶向性MicAbody紧密地和唯一地结合cCAR-T细胞。
为了清除潜伏性HIV病毒库,Herzig和Greene一直在实验室中测试称为广泛中和抗体(bNAb)的抗HIV抗体。他们与Xyphos生物科学公司的科学家合作,基于bNAb构建出MicAbody(称为Mic-bNAb),并在各种实验室分析中测试了cCAR-T细胞和Mic-bNAb的组合使用。
在实验室中,Herzig以感染了各种HIV毒株的多种CD4 T细胞(HIV的天然靶标)为研究对象测试了这些组合。特别是,他使用了源自人类扁桃体的细胞制剂;已知在HIV感染者中,扁桃体T细胞是潜伏性HIV病毒库。他想确保cCAR-T/Mic-bNAb组合使用能杀死代表潜伏性HIV病毒库的T细胞类型。
结果是显著的:cCAR-T细胞与Mic-bNAb的组合使用特异性地杀死了受到感染的CD4 T细胞,但未杀死未感染的细胞。它们仅与Mic-bNAb组合使用时才杀死受感染的细胞,然而,不论是单独使用还是与不靶向HIV的MicAbody组合使用都没有这种效果。他们杀死了在实验室中感染了多种HIV毒株的CD4 T细胞。当与靶向HIV的Mic-bNAb和靶向癌细胞的MicAbody组合使用时,cCAR-T细胞可以有效杀死在相同细胞培养物中混合在一起的癌细胞和受到HIV感染的细胞。换句话说,cCAR-T细胞精确地证明了它旨在实现的多功能性和特异性。
最后,Herzig和Greene测试了cCAR-T/Mic-bNAb平台是否可以攻击接受ART治疗的HIV感染者血液中存在的潜伏性HIV病毒库。为了让这些细胞对cCAR-T细胞可见,他们首先用强效的称为“潜伏逆转剂(latency-reversing agent)”的化合物活化这些细胞培养物。在接触后48小时内,一半以上活化的表达HIV靶抗原的细胞被清除。Greene总结道,“这个平台前景广阔。”
4.Cell:开发出BARseq技术,构建出更好的大脑图谱
doi:10.1016/j.cell.2019.09.023
美国冷泉港实验室Anthony Zador教授及其团队一直在研究大脑回路如何介导和控制复杂的行为,在10年前就着手绘制大脑功能的三个支柱:连接性、基因表达和生理活性。由于尚无有效地做到这一点的技术,他的团队开发出MAPseq,即一种用来绘制不同脑细胞之间的连接图谱并更好地了解它们彼此之间如何相互作用的技术。多年来,Zador和他的实验室持续地改进这种技术。
在一项新的研究中,在博士后研究员Xiaoyin Chen的领导中,Zador实验室介绍了下一代的MAPseq技术:BARseq。这种新技术可用于通过精确地指出神经元所在的位置来扩展大脑图谱。这使得BARseq不仅可以确定神经元的连接,还可以确定其基因表达模式和生理活性,这是MAPseq不能解决的两个难题。相关研究结果发表在2019年10月17日的Cell期刊上,论文标题为“High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing”。
这些研究人员使用BARseq绘制了小鼠大脑听觉皮层中3579个神经元的连接图谱。将连接性模式与基因表达相匹配,可使科学家们表征不同的细胞类型并确定其在大脑中的特定功能。这将被证明是研究神经回路如何形成的一种有价值的工具。
|
|