|
2#
楼主 |
发表于 2017-8-1 11:27:18
|
只看该作者
本帖最后由 邓文龙 于 2017-8-1 11:33 编辑
7.Cell:重大突破!发现一类新的小RNA分子保护哺乳动物基因组
doi:10.1016/j.cell.2017.06.013
我们的基因组是雷区,散布着潜在破坏性的DNA序列,不过在这些DNA上,存在着数以十万计的哨兵在站岗。这些被称作表观遗传标记的哨兵在这些位点上附着到DNA双螺旋上,阻止这些DNA序列发挥着它们的破坏性作用。
如今,在一项新的研究中,来自美国冷泉港实验室(CSHL)的研究人员发现可能作为这些哨兵的应急替换,突击队仅在这些非常毫无防备的时刻才被强征在整个基因组中服役。特别地,在哺乳动物胚胎被植入母体子宫壁中之前,这些临时的保护者在哺乳动物胚胎发育的一个非常早期的期间保护它们的基因组。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“LTR-Retrotransposon Control by tRNA-Derived Small RNAs”。论文通信作者为冷泉港实验室教授Rob Martienssen。论文第一作者为Martienssen实验室博士后研究员Andrea Schorn博士。
这种植入前胚胎是表观遗传标记在重新写入之前被擦除的两种情形之一。另一种情形是生殖细胞(卵子和精子)形成的一个步骤,已知在这种情形下,具有被称作piwi蛋白相互作用RNA(piwi-interacting RNAs, piRNA)的临时保护者。这项新的研究证实在植入前胚胎中,另一种小RNA类型在它的表观遗传重编程期间发挥着一种类似的基因组保护作用。
这些新鉴定出的保护者具有两种类型:长18nt的RNA片段和长22nt的RNA片段。Schorn发现这些RNA片段与逆转录转座子中的序列完全互补,而且为了激活这种寄生性序列元件,这种互补性序列必须参与进来。
Schorn仔细地分析了小鼠胚胎干细胞的内含物,发现很多自由漂浮的长18nt的RNA片段。计算机分析揭示出它们的序列与转移RNA(tRNA)中的序列完全匹配。tRNA普遍存在,并且参与蛋白合成。几十年来,人们就已知道tRNA被长末端重复序列(long terminal repeat, LTR)-逆转录转座子(LTR- RetroTn)劫持,LTR- RetroTn序列的一部分停靠在引物结合位点(primer binding site, PBS)上,启动一种激活LTR- RetroTn的过程。LTR- RetroTn也被称作内源性逆转录病毒。
8.Cell:重大突破!首次从结构上揭示CRISPR-Cas3系统作用机制
doi:10.1016/j.cell.2017.06.012
图片来自Cell,doi:10.1016/j.cell.2017.06.012
在一项新的研究中,来自美国哈佛医学院和康奈尔大学的研究人员获得来自嗜热裂孢菌(Thermobifida fusca)的I型CRISPR复合体的近原子分辨率的图片,揭示出它的作用机制的关键步骤。这些发现提供改善CRISPR在生物医学应用时的效率和准确性所需的结构数据。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System”。论文通信作者为哈佛医学院细胞生物徐助理教授Maofu Liao和康奈尔大学研究员Ailong Ke。
这些研究人员利用冷冻电子显微镜技术首次描述出当这种CRISPR复合体装载靶DNA并让它做好被Cas3酶切割的准备时准确发生的一系列事件。他们说,这些结构揭示出一种存在多层错误检测的过程,即存在阻止不想要的基因组损伤的分子冗余(molecular redundancy)。
为了更好地理解CRISPR-Cas如何发挥功能,Liao、Ke和他们的团队着重关注细菌中最常见的CRISPR亚型:1型CRISPR,即利用一种被称作CRISPR Cascade的核糖蛋白复合体(riboprotein complex)捕获DNA,并且利用酶Cas3切割外源DNA。
通过联合使用生化技术和冷冻电子显微镜技术,他们复原出在不同的功能状态下的稳定的Cascade,并且进一步获得Cascade在捕获和加工DNA时分辨率低至3.3埃(大约是一个碳原子直径的3倍)的图片。
在CRISPR-Cas3中,crRNA被装载到CRISPR Cascade上,随后寻找一段非常短的表明外源病毒DNA存在的DNA序列(被称作PAM)。
Liao、Ke和他们的同事们发现当Cascade检测PAM序列时,它让DNA呈锐角弯曲,迫使一小段DNA解链。这允许crRNA的一个长11nt的片段结合到靶DNA链上,形成一种“种泡(seed bubble)”。
这种种泡发挥一种自动防故障装置的作用,检查靶DNA是否匹配crRNA。如果它们正确地匹配,那么这种种泡就会扩大,crRNA的剩余部分就与它对应的靶DNA结合,形成一种“R环(R-loop)”结构。
一旦这种R环完全形成,这种CRISPR Cascade复合体经历一种构象变化,从而将靶DNA锁定。它也让DNA的第二条非靶标链产生一个凸起,这个凸起被移交到这种CRISPR Cascade复合体的一个不同位置上供Cas3酶切割。
仅当一种完整的R环形成时,Cas3酶才结合和切割在这条非靶标DNA链上产生的这个凸起上的DNA。
这些发现揭示出一种精心设计的分子冗余确保精准切割和避免错误地切割细菌自己的DNA。
9.Cell:重磅!揭示细胞识别端粒缩短机制
doi:10.1016/j.cell.2017.06.006
端粒保护着我们的染色体,非常类似于位于鞋带末端的阻止鞋带松散开的塑料帽。在细胞的一生当中,端粒每经历一次细胞分裂就逐渐地变得更短,因此,作为一种保护帽,端粒变得越来越没有效果。如果它们变得太短,那么这就意味着细胞的遗传物质受到破坏,细胞停止分裂。端粒缩短和下降的细胞分裂被认为衰老的特征,并且可能导致衰老过程。然而,端粒缩短也是一种抵抗癌症的防御机制,这是因为高度增殖性细胞仅当它们的端粒不会缩短时才能够发生分裂。因此,端粒缩短是一把双刃剑,必须受到仔细地调控才能在衰老和癌症预防之间取得一种平衡。当端粒在细胞一生当中较早地因意外因素被剪短时,它必须得到修复,这样细胞就不会过早地变得衰老。
在一项新的研究中,来自德国分子生物学研究所(IMB)和美茵茨大学(JGU)等研究机构的研究人员进一步揭示出端粒的秘密。他们发现一种被称作TERRA的RNA分子有助确保非常短的(或者说断裂的)端粒再次得到修复。这项研究为调节细胞衰老、在衰老和癌症中存活下来的分子过程提供新的认识。相关研究结果发表在2017年6月29日的Cell期刊上,论文标题为“Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle”。论文通信作者、IMB副主任、JGU发育生物学与神经生物学研究所教授Brian Luke。论文第一作者均为Luke实验室研究员Diego Bonetti、Arianna Lockhart和Marco Graf。
这篇论文实际上是Luke实验室开展的两个不同的关于端粒的研究项目的结果。Bonetti研究了TERRA对细胞周期的调节,结果发现TERRA水平在细胞周期的不同阶段是不同的。与此同时,Lockhart和Graf研究了TERRA在较短的端粒上的聚集。当他们发现周期性的TERRA聚集模式在较短的端粒和较长的端粒之间存在差异时,他们就已知道会产生重要结果,于是决定合作进一步开展研究。
他们的合作让他们意识到TERRA实际上在所有端粒上聚集,但是在较长的端粒上,在蛋白Rat1和RNase H2的帮助下,它快速地被清除。这些蛋白偏好地结合到较长的端粒上,从而确保TERRA被清除,但是它们并不存在于非常短的端粒上,这就意味着TERRA更长地聚集在这些非常短的端粒上。这种机制确保细胞随后对较短的端粒进行修复,这在细胞存活和持续分裂中发挥着至关重要的作用。
10.Cell:上海药物研究所徐华强课题组鉴定出G蛋白偶联受体招募抑制蛋白的磷酸化编码
doi:10.1016/j.cell.2017.07.002
在一项新的研究中,来自中国科学院上海药物研究所、上海科技大学和美国文安德尔研究所等研究机构的研究人员首次揭示出一种被称作视紫红质的G蛋白偶联受体(GPCR)结合到一种被称作抑制蛋白(arrestin)的信号分子上时的组分细节。视紫红质和抑制蛋白是身体复杂的细胞通信网络中的两种至关重要的蛋白分子。这项新的发现进一步改进了2015年发表在Nature期刊上的一项研究(Nature, doi:10.1038/nature14656):首次描述了这两种蛋白分子结合在一起时的结构。此外,这项发现也解答了一个长期存在的问题,这可能导致人们开发出更加有效的同时具有更少副作用的药物来治疗心力衰竭、癌症等疾病。相关研究结果发表在2017年7月27日的Cell期刊上,论文标题为“Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors”。论文通信作者为中国科学院上海药物研究所VARI/SIMM研究中心主任徐华强(H. Eric Xu)教授。徐华强教授也是2015年的那篇Nature论文的通信作者。
为了确定他们的改进的结构,徐华强教授实验室高级研究员Edward Zhou博士利用改进的软件重新分析了2015年那项研究中收集的22000多张图片。他们揭示出视紫红质表面上的三种之前隐藏的被称作磷酸基的分子组分和抑制蛋白表面上的三种相对应的起着停泊站作用的口袋。这些磷酸基(被称作磷酸化编码)的特定排列是视紫红质结合到抑制蛋白上所必需的。一旦这两者结合完成,这种相互作用就启动一系列复杂的通信,从而调节着体内的生物学功能。
用来探究这些磷酸化编码在已标注的GPCR数据中的发生率的工具并不存在,因此de Waal构建出一种新的工具,即PhosCoFinder。该工具允许徐华强课题组快速地寻找所有已知的GPCR和预测潜在的磷酸化编码。
不出所料,他们发现在825种GPCR中,PhosCoFinder扫描的一半以上的GPCR在它们的羧基尾巴上含有磷酸化编码。他们也发现在剩下的大多数GPCR上含有磷酸化编码,然而,这些磷酸化编码位于它们的羧基尾巴之外的区域,这可能影响了这些GPCR结合抑制蛋白的方式。徐华强教授说,下一步就是研究这些发现是否适合于所有的GPCR和与抑制蛋白相互作用的其他细胞表面蛋白。
11.Cell:上海交大房静远团队证实具核梭杆菌促进结直肠癌化疗耐药性产生机制
doi:10.1016/j.cell.2017.07.008
图片来自Cell, doi:10.1016/j.cell.2017.07.008
在一项新的研究中,来自中国上海交通大学医学院附属仁济医院和美国密歇根大学医学院的研究人员证实一种细菌与结直肠癌复发和较差的治疗结果相关联。他们发现肠道中的具核梭杆菌(Fusobacterium nucleatum)能够阻止化疗导致的一种被称作细胞凋亡的癌细胞死亡过程。相关研究结果发表在2017年7月27日的Cell期刊上,论文标题为“Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy”。论文通信作者为上海交通大学医学院附属仁济医院消化科主任医师房静远(Jing-Yuan Fang)教授、上海交通大学医学院附属仁济医院消化科副主任医师陈萦晅(Yingxuan Chen)、上海交通大学医学院附属仁济医院消化系病硕士生导师陈豪燕(Haoyan Chen)、上海交通大学医学院附属仁济医院消化科硕士生导师洪洁(Jie Hong)和密歇根大学医学院外科教授邹伟平(Weiping Zou)博士。
医生们经常利用化疗治疗癌症患者,这是因为它会最终诱导肿瘤细胞死亡。但是一些癌细胞能够避免化疗诱导的细胞凋亡。在这项新的研究中,这些研究人员发现这些癌细胞通过激活一种被称作自噬的细胞存活机制逃避细胞凋亡过程。这种机制让癌细胞免遭摧毁。
一旦自噬处于开启状态,结直肠癌就对化疗产生抵抗力。具核梭杆菌让自噬持续开启。这就是为何这些肿瘤细胞可能能够逃避化疗诱导的细胞凋亡。
通常而言,自噬能够被开启或关闭。然而,这些研究人员发现具核梭杆菌阻止两个微RNA(microRNA)---miRNA-18a*和miRNA-4802---表达,从而阻止自噬关闭。这两个microRNA的缺乏让自噬持续处于“开启”状态。
12.Cell:纤毛是肌肉中的脂肪形成的关键
doi:10.1016/j.cell.2017.06.035
不管你喜欢不喜欢,当我们变老时,我们的肌肉细胞逐一地被脂肪细胞替换。当我们的肌肉遭受损伤时,这个过程会加速,而且这个过程的一种极端形式在杜兴氏肌肉营养不良(Duchenne muscular dystrophy, DMD)等肌肉萎缩疾病中也会观察到。如今,在一项新的研究中,来自美国加州大学旧金山分校的研究人员以小鼠为实验对象,证实在肌肉中散布的脂肪形成细胞表面上发现的被称作纤毛的细胞天线在这种肌肉-脂肪转化中发挥着关键性作用。这些发现提示着纤毛与组织更新之间存在着一种之前未曾预料到的关联。这种新的分子理解可能为再生医学打开新局面,而且有朝一日能够让科学家们改进衰老和疾病期间的肌肉更新。相关研究结果发表在2017年7月13日的Cell期刊上,论文标题为“Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis”。
为了理解原发性纤毛是否具有发育之外的作用,并且是否在维持成体组织中发挥着作用,论文第一作者、Reiter实验室博士后研究员Daniel Kopinke博士着手研究纤毛信号转导是否参与肌肉在遭受损伤后的愈合能力。
之前的研究已证实当肌肉遭受损伤时,与肌肉细胞一起生活的脂肪形成细胞,即纤维/脂肪生成祖细胞(fibro/adipogenic progenitors, FAP),发生分裂和分化为脂肪细胞。Kopinke发现不同于肌肉细胞的是,这些形成脂肪的FAP细胞更可能携带着原发性纤毛,而且肌肉损伤进一步增加了具有纤毛的FAP细胞的丰度。这些观察结果提示着纤毛可能在脂肪形成中发挥着一种重要的作用。
为了测试这种假设,这些研究人员利用两种小鼠肌肉损伤模型:一种急性损伤模型,是通过注射破坏性试剂到小鼠肌肉中构建出来的;一种慢性损伤模型,发生渐进性肌纤维丧失,正如在DMD疾病中观察到的那样。当他们通过基因手段阻断FAP细胞形成纤毛的能力时,这两种损伤模型都表现出更低的肌内脂肪含量。更重要的是,纤毛丧失不仅导致脂肪减少,而且也有助肌肉再生。 Kopinke说,“这是意料之外的。我们将小鼠DMD模型中的肌肉转化为更加类似于正常小鼠中的肌肉。”
通过开展一系列实验,这些研究人员发现经过基因改造缺乏纤毛的细胞导致低水平的Hedgehog通路激活,这足以阻断骨骼肌中的脂肪变性。当他们利用其他的方法增加Hedgehog信号时,小鼠肌肉再次具有更少的脂肪。(生物谷 Bioon.com)
http://news.bioon.com/article/6707541.html
(華成旅行最便宜 03-3833-9823) |
|