注册 找回密码
搜索
查看: 593|回复: 1
打印 上一主题 下一主题

新型冠状病毒受体ACE2在多种疾病中的作用 负调节 2021

[复制链接]
跳转到指定楼层
1#
发表于 2021-12-20 17:39:09 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 邓文龙 于 2021-12-20 19:59 编辑

新型冠状病毒受体ACE2在多种疾病中的作用   负面调节因子

中国病理生理杂志
题 名:        新型冠状病毒受体ACE2在多种疾病中的作用
第一作者:        王莉兰                  
期刊名称:        中国病理生理杂志        出版年        2021        卷        37        期        01

王莉兰 1濮文渊 1徐中驰 1李杰 1周春祥 1,2
1. 南京中医药大学,江苏 南京 210023;
2. 南京明基医院,江苏 南京 210019
中图分类号: R563.1+4; R363 最近更新:2021-02-01 DOI:10.3969/j.issn.1000-4718.2021.01.027
全文图表参考文献作者出版信息
EN 引

目录contents
摘要
关键词
1 ACE2的特征及作用途径
1.1 ACE2的结构及分布
1.2 ACE2作用的主要途径
2 ACE2在各个疾病中的潜在机制及作用
2.1 ACE2与肺部疾病
2.2 ACE2与CVD
2.3 ACE2与癌症
2.4 ACE2与肾脏疾病
2.5 其他
3 结语
参考文献

关键词
血管紧张素转化酶2; 新型冠状病毒; 急性肺损伤; 心血管疾病; 癌症

自2019冠状病毒病(coronavirus disease 2019, COVID-19)暴发以来,血管紧张素转换酶2 (angiotensin-converting enzyme 2, ACE2)作为新型冠状病毒(severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)的功能性受体受到了广泛关注[1-2],但其实早在2000年被发现以来, ACE2一直都是各个医学领域的研究热点。因ACE2的定位和功能状态存在多态性,通过多种途径和效应靶点在多种难治性疾病中发挥着不可或缺的作用。下文将从ACE2的特征及在各种疾病中的潜在机制探析其作用的多样性,从而为相关疾病的治疗提供新策略。
1 ACE2的特征及作用途径
1.1 ACE2的结构及分布
人类ACE2是第一个已知的人类ACE的同源物,最早由人类心力衰竭心室和淋巴瘤cDNA文库中鉴定出[3]。ACE2具有表观信号肽、单个金属蛋白酶活性位点和跨膜结构域,若切割跨膜结构域的N末端,可从转染的细胞中分泌出活性ACE2酶[3-4]。ACE2最早在肾脏(肾内血管的内皮及肾小管上皮)、心脏和睾丸中发现[4]。随后,还发现ACE2表达广泛分布于其他器官,例如肺、脑、胰腺、膀胱、胃、回肠、脂肪细胞和肝脏[5]。同时, ACE2还是冠状病毒的功能性受体,参与介导病毒进入和细胞融合[1-2]。
1.2 ACE2作用的主要途径
ACE2主要通过ACE2/血管紧张素-(1-7) [angiotensin-(1-7), Ang-(1-7)]/Mas受体(Mas receptor, MasR)轴拮抗传统的肾素-血管紧张素系统(renin-angiotensin system, RAS)以发挥血管舒张、抗增殖、抗纤维化、抗炎等效应[6-8],见图1。

图1 ACE2作用的主要途径

Figure 1 Main pathways of angiotensin-converting enzyme 2 (ACE2) actions. Renin-angiotensin system (RAS) is composed of classical and non-classical approaches. The non-classical axis cuts an angiotensin I (Ang I) residue by ACE2 to generate Ang-(1-9), and degrades the main effector of RAS, angiotensin II (Ang II), into the vasodilator Ang-(1-7), which mediate the biological activity through Mas receptor (MasR), forming the ACE2/Ang-(1-7)/MasR axis to balance the activity of the ACE/Ang II/AT1R axis. AT1R: angiogenin II type 1 receptor.

2 ACE2在各个疾病中的潜在机制及作用
ACE2的作用具有多样性,除了是COVID-19发病的关键靶点外,还参与急性肺损伤(acute lung injury, ALI)、心血管疾病(cardiovascular diseases, CVD)、癌症、肾脏疾病等多种疾病的发生发展(图2)。下文将分述ACE2在各个疾病中的潜在机制及作用。

图2 ACE2作用的多态性

Figure 2 Schematic diagram of the main functions of angiotensin-converting enzyme 2 (ACE2). SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; CVD: cardiovascular diseases; AVP: arginine vasopressin; Trp: tryptophan.

2.1 ACE2与肺部疾病
2.1.1 ACE2与COVID-19

COVID-19由2019年底出现的SARS-COV-2侵入人体呼吸道所致[1-2]。SARS-CoV-2侵入人体的途径与严重急性呼吸综合征冠状病毒(severe acute respiratory syndrome coronavirus, SARS-CoV)相似,即通过病毒表面的棘突(spike, S)蛋白与II型肺泡(alveolar type II, AT2)细胞表面的受体ACE2相结合,随后病毒包膜蛋白与细胞膜融合,病毒将遗传物质释放入细胞内,进而复制倍增引起一系列病理改变[9]。Wu等[10]研究发现,补偿ACE2和平衡ACE/ACE2功能可能对SARS-CoV-2诱发的肺损伤的治疗有益; Cui等[1]认为降低ACE2的表达可以抑制SARS-CoV-2。二者不同的研究结果可能与病情发生期和进展期机制及侧重点有所不同相关: SARS-CoV-2依靠ACE2进入细胞,而在COVID-19进展期ACE2的表达下降则会加剧肺损伤。如何在治疗时根据时期的不同选择药物还需进一步探索。这两项研究为ACE2介导下COVID-19的药物研发提供了理论依据,通过计算机辅助药物高通量筛选可破坏病毒S蛋白-ACE2连接通路的化学药物[11]及与ACE2相结合的中成药中的活性化合物可以发挥对COVID-19的防治作用[12]。
2.1.2 ACE2与ALI

ALI多因误吸、药物、炎症等原因引起。已经证实ACE2和Ang-(1-7)在ALI中具有抗炎、抗氧化和抗凋亡的保护作用[13]。ACE2可通过抑制肺内皮细胞凋亡[14]、拮抗血管内皮生长因子a(vascular endothelial growth factor a, VEGFa)对肺血管通透性增加的影响[15]以及抑制细胞外信号调节激酶1/2 (extracellular signal-regulated kinase 1/2, ERK1/2)、核因子κB (nuclear factor-κB, NF-κB)[16]和丝裂原激活蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路[17]等途径改善ALI后的肺功能。Sodhi等[18]研究发现,脱精氨酸9缓激肽(desarginine 9 bradykinin, DABK)可能是体内肺ACE2的底物,肺ACE2活性的降低使得DABK/缓激肽B1受体(bradykinin B1 receptor, BKB1R)轴介导的信号传导的能力受损,导致中性粒细胞浸润的发生更加迅速,肺部炎症更加严重。这为肺部炎症性疾病提供了新的潜在性治疗靶标。健康人体肺内ACE2的功能尚不明确,且肺ACE2的其他生物底物及其对炎症的贡献在很大程度上也不清楚,需要加以解决。
2.2 ACE2与CVD
多种高血压动物模型已经证实ACE2的降压作用[19-20]。在人类高血压与ACE2相关研究中发现,高血压患者血清ACE2与健康人相比活性较高[21];患有1型糖尿病的高血压患者,男性和女性的血清ACE2活性均与收缩压呈正相关,随着收缩压的升高的患者ACE2活性升高[22]。ACE2可拮抗Ang II收缩血管的作用,其活性升高提示ACE2在机体生理性调节血压的过程中可能起代偿作用,可见ACE2很可能成为高血压的治疗新靶点。人类ACE2基因的遗传变异与CVD的易感性相关[23-25]。ACE2的单核苷酸多态性与冠状动脉疾病[23]、左心房重构[24]和间隔壁厚度的变异[25]相关。最新研究发现造血干/祖细胞(hematopoietic stem/progenitor cells, HSPCs)的失衡与RAS相关,可通过增加ACE2活性恢复HSPCs舒张血管的功能[26],由此可见ACE2作用于心血管的途径需进一步探索。使用重组人ACE2 (recombinant human ACE2, rhACE2)可有效降低血浆Ang II的水平,并增加Ang-(1-7)的水平,减少心肌肥大和纤维化并纠正了舒张功能障碍[27]。ACE2内源性激动剂乙酰甘氨酸重氮氨苯脒(diminazene aceturate, DIZE)可抵抗小鼠CVD[8]。目前尚未将ACE2激活剂用于人类CVD研究中,需要更进一步巩固前期试验(包括药物安全性、时间有效性等)后开展人类相关实验以评价其具体疗效。
2.3 ACE2与癌症
在RAS中,因Ang II有着促进细胞黏附、增殖、迁移和血管生成的效应,从而影响多种癌症的发展[28]。大量研究证明, ACE2/Ang-(1-7)/MasR轴与癌症相关,可通过抑制癌细胞增殖和转移[29-34],抑制肿瘤相关血管生成[35-36],抑制上皮-间充质转化(epithelial-mesenchymal transition, EMT)[39-40],从而达到良好的抗肿瘤作用,同时ACE2还成为了新兴的肿瘤生物标志物[41-42]。但需证实针对不同癌症ACE2所发挥的效应,以确定其最佳的抗肿瘤方案。
2.3.1 ACE2抑制癌细胞增殖及转移

ACE2过表达可以抑制肿瘤细胞体内外的增殖和转移[29]。ACE2蛋白的激活及Ang-(1-7)的治疗在体内外抑制了肺癌细胞和转移性前列腺癌细胞[30]的生长,且通过RNA干扰减少ACE2表达可促进培养的胰腺癌细胞增殖[31]。ACE2蛋白水平与乳腺癌细胞的转移能力和乳腺癌分级之间呈负相关关系[32],且ACE2/Ang-(1-7)/Mas轴可减少骨肉瘤细胞增殖和并预防癌症转移[33]。然而,在肾细胞癌中, Ang-(1-7)依赖于MasR诱导的Akt激活,并促进了肿瘤的侵袭和转移[34]。这些相反的结果可能与研究中使用了不同的检测方法和信号传导途径相关,还可能与不同的癌症模型有关。但这些结果仍为肿瘤的进展和转移提供了新的机制,调节ACE2/Ang-(1-7)/Mas轴为开发新型的抗肿瘤转移疗法提供了启示。
2.3.2 ACE2抑制肿瘤相关血管生成

VEGFa是血管生成的重要介质[28]。ACE2的过表达通过抑制人肺癌细胞生长和VEGFa的产生来减少非小细胞肺癌的侵袭和血管生成[35]。ACE2的抗血管生成活性可拮抗VEGF和血管内皮生长因子受体(vascular endothelial growth factor receptor, VEGFR)以减缓鼻咽癌和肝癌的发展[34, 36]。由此可见ACE2过表达可通过抑制肿瘤相关血管生成以达到抗肿瘤的作用。
2.3.3 ACE2抑制EMT

EMT是肿瘤进展和转移的关键步骤[30],其过程涉及上皮标志物(包括E-钙黏着蛋白)的丢失或下调,以及间质性分子标志物(例如波形蛋白和α-平滑肌肌动蛋白)的上调[37]。Qian等[30]研究发现, ACE2在A549肺癌细胞系中过表达可减少肿瘤体内转移,并在体内外上调E-钙黏着蛋白表达,下调波形蛋白表达。另外, Ang II在局部组织水平肝内胆管癌的EMT过程中表达增强[38]。ACE2通过抑制EMT来减少肿瘤的转移,这进一步表明ACE2可能成为治疗癌症的潜在靶标。
2.3.4 ACE2是新兴的肿瘤生物标志物

具有远处转移的乳腺癌样本中的ACE2呈低表达水平[32]。血清ACE2表达水平较高的肝细胞癌患者比ACE2水平较低的具有更长的生存时间[36]。乳腺癌患者中ACE2的表达升高与无复发生存率升高有关[34]。这提示ACE2的表达水平可能作为癌症患者的预后指标。此外, ACE2还作为胆囊腺癌和甲状腺癌进展的生物标志[39-40]。这些研究表明,检测ACE2活性可能成为癌症患者的有用诊断工具和预后指标,但目前尚不清楚ACE2指标的升高是否与组织合成或脱落增加所致的可溶性ACE2增多相关。
2.4 ACE2与肾脏疾病
RAS的激活对肾脏疾病的进展有重要影响,其中ACE2/Ang(1-7)/MasR轴通过上调一氧化氮和前列腺素的浓度来诱导利尿,减轻氧化应激,增强血管舒张,抗增殖和纤维化,从而发挥保护肾脏的作用[41]。所有类型的原发性和继发性肾脏疾病以及肾移植患者中均可检测到肾小球和肾小管毛细血管内皮中ACE2表达上调[42],这可能与ACE2应激性保护肾脏功能有关。人参皂苷Rg3通过上调肾脏中的ACE2可减轻大鼠和小鼠的肾损伤,表明ACE2对肾脏组织具有保护作用[43]。糖尿病肾病(diabetic nephropathy, DN)小鼠模型中ACE2通过防止肾小球和肾小管间质受损及维持肾脏灌注和超滤而减缓DN进展[44-45]。rhACE2可改善DN小鼠模型的肾脏功能和结构,降低血压和NADPH氧化酶的活性,减慢DN进程[46]。ACE2内源性激动剂DIZE通过ACE2/Ang-(1-7)/MasR轴来抵抗DN进展[42]。目前,Ang II 1型受体(Ang II type 1 receptor, AT1R)阻滞剂和ACE抑制剂已广泛应用于临床肾脏疾病的治疗,ACE2的激活治疗能否作为补充治疗或其非劣效性仍需证实。
2.5 其他
除上述疾病外,ACE2还在其他难治性疾病中发挥着重要作用。ACE2可延缓糖尿病小鼠模型的进展,减轻多种糖尿病并发症[47-48]。ACE2/Ang-(1-7)/MasR轴在脑损伤和中风模型中也发挥着有益作用[49-50]。使用ACE2内源性激动剂DIZE增强脑ACE2活性可激活磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)/丝苏氨酸蛋白激酶(Akt)通路,从而预防和逆转小鼠的联想识别记忆缺陷并减少与淀粉样蛋白沉积相关的认知功能障碍[51-52]。同时, ACE2/Ang-(1-7)/MasR轴的激活可以减轻小鼠焦虑行为,可能成为焦虑和抑郁等相关疾病治疗的一项重要策略[53]。ACE2可与中性氨基酸转运蛋白B0AT1结合,调节肠上皮细胞中色氨酸的摄取,以激活抗菌肽的表达来调节肠道菌群,因此ACE2缺失会影响小肠局部色氨酸稳态,增加结肠炎、肠易激惹综合征等肠道炎症的易感性[54-55]。
3 结语
ACE2在各个疾病中发挥着独特的作用。研究者已在多种动物疾病模型中开展有关ACE2定位、定量及激活剂的相关研究,现可基于已研究出的ACE2/Ang-(1-7)/MasR轴激动剂或拮抗剂,开发出更可靠的方法来治疗人类相关疾病。另外, ACE2/Ang-(1-7)/MasR轴内稳态如何平衡及局部微环境(如葡萄糖代谢、脂肪代谢、胆固醇代谢、炎症等)如何影响ACE2/Ang-(1-7)/MasR轴也需进一步研究。对这些问题的深入探索将为ACE2干预这些难治性疾病提供更有效的策略,为人类疾病开创一个极具创新性和有效性的治疗目标。

http://www.cjpp.net/fileup/HTML/2021-1-181.htm

2#
 楼主| 发表于 2021-12-20 17:39:27 | 只看该作者
本帖最后由 邓文龙 于 2021-12-20 20:00 编辑

参考文献
1
Cui Q, Huang C, Ji X, et al. Possible inhibitors of ACE2, the receptor of 2019-nCoV[EB/OL]. (2020-02-04) [2020-03-06]. https://www.preprints.org/manuscript/202002.0047/v1. DOI: 10.20944/preprints202002.0047.v1. [百度学术]

2
Hoffmann M, Kleine-Weber H, Krüger N, et al. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells[EB/OL]. (2020-01-31) [2020-03-06]. https://doi.org/10.1101/2020.01.31.929042. [百度学术]

3
Burrell LM, Johnston CI, Tikellis C, et al. ACE2, a new regulator of the renin-angiotensin system[J]. Trends Endocrinol Metab, 2004, 15(4):166-169. [百度学术]

4
Harmer D, Gilbert M, Borman R, et al. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme[J]. FEBS Lett, 2002, 532(1/2):107-110. [百度学术]

5
Heleia RH, Marta R, Vanesa P, et al. Characterization of ACE and ACE2 expression within different organs of the NOD mouse[J]. Int J Mol Sci, 2017, 18(3):563. [百度学术]

6
Rajapaksha IG, Gunarathne LS, Asadi K, et al. Liver-targeted angiotensin converting enzyme 2 therapy inhibits chronic biliary fibrosis in multiple drug-resistant gene 2-knockout mice[J]. Hepatol Commun, 2019, 3(12):1656-1673. [百度学术]

7
彭雯雯, 刘国英, 潘燕霞, 等. ACE2基因过表达减轻血管紧张素Ⅱ诱导的神经细胞氧化应激[J]. 中国病理生理杂志, 2019, 35(6):1081-1088. [百度学术]

Peng WW, Liu GY, Pan YX, et al. Over-expression of ACE2 gene alleviates Ang Ⅱ-induced oxidative stress in neural cells[J]. Chin J Pathophysiol, 2019, 35(6):1081-1088. [百度学术]

8
Qaradakhi T, Gadanec LK, McSweeney KR, et al. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases[J]. Clin Exp Pharmacol Physiol, 2020, 47(5):751-758. [百度学术]

9
Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of SARS-CoV-2[J]. Am J Respir Crit Care Med, 2020, 202(5):756-759. [百度学术]

10
Wu Y. Compensation of ACE2 function for possible clinical management of 2019-nCoV-induced acute lung injury[J]. Virol Sin, 2020, 35(3):256-258. [百度学术]

11
Smith M, Smith JC. Repurposing therapeutics for COVID-19: supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface[EB/OL]. (2020-03-11) [2020-04-13]. https://doi.org/10.26434/chemrxiv.11871402.v4. [百度学术]

12
Yan YM, Shen X, Cao YK, et al. Discovery of anti-2019-nCoV agents from 38 Chinese patent drugs toward respiratory diseases via docking screening[EB/OL]. (2020-02-23) [2020-04-13]. https://www.preprints.org/manuscript/202002.0254/v2. DOI: 10.20944/preprints202002.0254.v2. [百度学术]

13
Zambelli V, Bellani G, Borsa R, et al. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental acute respiratory distress syndrome[J]. Intensive Care Med Exp, 2015, 3(1):44. [百度学术]

14
Zhang M, Gao Y, Zhao W, et al. ACE-2/ANG1-7 ameliorates ER stress-induced apoptosis in seawater aspiration-induced acute lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(6):L1015-L1027. [百度学术]

15
Yu X, Lin Q, Qin X, et al. ACE2 antagonizes VEGFa to reduce vascular permeability during acute lung injury[J]. Cell Physiol Biochem, 2016, 38(3):1055-1062. [百度学术]

16
Li Y, Zeng Z, Cao Y, et al. Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways[J]. Sci Rep, 2016, 6:27911. [百度学术]

17
Chen Q, Liu J, Wang W, et al. Sini decoction ameliorates sepsis-induced acute lung injury via regulating ACE2-Ang (1-7)-Mas axis and inhibiting the MAPK signaling pathway[J]. Biomed Pharmacother, 2019, 115:108971. [百度学术]

18
Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 314(1):L17-L31. [百度学术]

19
Bessa A, Jesus EF, Nunes A, et al. Stimulation of the ACE2/Ang-(1-7)/Mas axis in hypertensive pregnant rats attenuates cardiovascular dysfunction in adult male offspring[J]. Hypertens Res, 2019, 42(12):1883-1893. [百度学术]

20
Basu R, Poglitsch M, Yogasundaram H, et al. Roles of angiotensin peptides and recombinant human ACE2 in heart failure[J]. J Am Coll Cardiol, 2017, 69(7):805-819. [百度学术]

21
Patel SK, Velkoska E, Freeman M, et al. From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension[J]. Front Physiol, 2014, 5:227. [百度学术]

22
Soro-Paavonen A, Gordin D, Forsblom C, et al. Circulating ACE2 activity is increased in patients with type 1 diabetes and vascular complications[J]. J Hypertens, 2012, 30(2):375-383. [百度学术]

23
Luo Y, Liu C, Guan T, et al. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang[J]. Hypertens Res, 2019, 42(5):681-689. [百度学术]

24
Pinheiro DS, Santos RS, Jardim P, et al. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: a genetic association study in Brazilian patients[J]. PLoS One, 2019, 14(8):e221248. [百度学术]

25
Kumar A, Rani B, Sharma R, et al. ACE2, CALM3 and TNNI3K polymorphisms as potential disease modifiers in hypertrophic and dilated cardiomyopathies[J]. Mol Cell Biochem, 2018, 438(1/2):167-174. [百度学术]

26
Joshi S, Gomez S, Duran-Mendez M, et al. Aging healthy, or with diabetes, is associated with ACE2/ACE imbalance in the hematopoietic stem progenitor cells[J]. FASEB J, 2019, 33(1 Suppl):514.7. [百度学术]

27
Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects[J]. Clin Pharmacokinet, 2013, 52(9):783-792. [百度学术]

28
Feng Y, Ni L, Wan H, et al. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro[J]. Oncol Rep, 2011, 26(5):1157-1164. [百度学术]

29
Chen X, Chen S, Pei N, et al. AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo[J]. Oncotarget, 2017, 8(1):354-363. [百度学术]

30
Qian YR, Guo Y, Wan HY, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition[J]. Oncol Rep, 2013, 29(6):2408-2414. [百度学术]

31
Zhou L, Zhang R, Zhang L, et al. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy[J]. Cancer Lett, 2011, 307(1):18-25. [百度学术]

32
Yu C, Tang W, Wang Y, et al. Downregulation of ACE2/Ang-(1-7)/Mas axis promotes breast cancer metastasis by enhancing store-operated calcium entry[J]. Cancer Lett, 2016, 376(2):268-277. [百度学术]

33
Ender SA, Dallmer A, Lassig F, et al. Expression and function of the ACE2/angiotensin(1-7)/Mas axis in osteosarcoma cell lines U-2 OS and MNNG-HOS[J]. Mol Med Rep, 2014, 10(2):804-810. [百度学术]

34
Xu J, Fan J, Wu F, et al. The ACE2/angiotensin-(1-7)/Mas receptor axis: pleiotropic roles in cancer[J]. Front Physiol, 2017, 8:276. [百度学术]

35
Cheng Q, Zhou L, Zhou J, et al. ACE2 overexpression inhibits acquired platinum resistance-induced tumor angiogenesis in NSCLC[J]. Oncol Rep, 2016, 36(3):1403-1410. [百度学术]

36
Ye G, Qin Y, Lu X, et al. The association of renin-angiotensin system genes with the progression of hepatocellular carcinoma[J]. Biochem Biophys Res Commun, 2015, 459(1):18-23. [百度学术]

37
Thiery JP, Acloque H, Huang RY, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5):871-890. [百度学术]

38
Okamoto K, Tajima H, Nakanuma S, et al. Angiotensin II enhances epithelial-to-mesenchymal transition through the interaction between activated hepatic stellate cells and the stromal cell-derived factor-1/CXCR4 axis in intra-hepatic cholangiocarcinoma[J]. Int J Oncol, 2012, 41:573-582. [百度学术]

39
Li J, Yang ZL, Ren X, et al. ACE2 and FZD1 are prognosis markers in squamous cell/adenosquamous carcinoma and adenocarcinoma of gallbladder[J]. J Mol Histol, 2014, 45(1):47-57. [百度学术]

40
Narayan SS, Lorenz K, Ukkat J, et al. Angiotensin converting enzymes ACE and ACE2 in thyroid cancer progression[J]. Neoplasma, 2020, 67(2):402-409. [百度学术]

41
王园园, 曹新冉, 杨旻, 等. ACE2内源性激动剂DIZE对糖尿病肾病大鼠的保护作用[J]. 中国病理生理杂志, 2017, 33(3):469-474. [百度学术]

Wang YY, Cao XR, Yang M, et al. Protective effect of DIZE, an ACE2 activator, on rats with streptozoto-cin-induced diabetic nephropathy[J]. Chin J Pathophysiol, 2017, 33(3):469-474. [百度学术]

42
Lely AT, Hamming I, van Goor H, et al. Renal ACE2 expression in human kidney disease[J]. J Pathol, 2004, 204(5):587-593. [百度学术]

43
Liu H, Jiang Y, Li M, et al. Ginsenoside Rg3 attenuates angiotensin II-mediated renal injury in rats and mice by upregulating angiotensin-converting enzyme 2 in the renal tissue[J]. Evid Based Complement Alternat Med, 2019, 2019:6741057. [百度学术]

44
Tikellis C, Bialkowski K, Pete J, et al. ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes[J]. Diabetes, 2008, 57(4):1018-1025. [百度学术]

45
Shiota A, Yamamoto K, Ohishi M, et al. Loss of ACE2 accelerates time-dependent glomerular and tubulointerstitial damage in streptozotocin-induced diabetic mice[J]. Hypertens Res, 2010, 33(4):298-307. [百度学术]

46
Liu Y, Wang F, Xu X, et al. Influence of Ang-(1-7) intervention on ACE2-Ang (1-7)-Mas pathway activity, hepatic glucose metabolism and insulin resistance in type-2 diabetic rats[J]. Trop J Pharm Res, 2019, 18(5): 995-999. [百度学术]

47
Rein J, Bader M. Renin-angiotensin system in diabetes[J]. Protein Pept Lett, 2017, 24(9):833-840. [百度学术]

48
Verma A, Xu K, Du T, et al. Expression of human ACE2 in lactobacillus and beneficial effects in diabetic retinopathy in mice[J]. Mol Ther Methods Clin Dev, 2019, 14:161-170. [百度学术]

49
Kuipers A, Moll GN, Levy A, et al. Cyclic angiotensin-(1-7) contributes to rehabilitation of animal performance in a rat model of cerebral stroke[J]. Peptides, 2020, 123:170193. [百度学术]

50
Janatpour ZC, Korotcov A, Bosomtwi A, et al. Subcutaneous administration of angiotensin-(1-7) improves recovery after traumatic brain injury in mice[J]. J Neurotrauma, 2019, 36(22):3115-3131. [百度学术]

51
Kamel AS, Abdelkader NF, Abd ES, et al. Stimulation of ACE2/ANG(1-7)/Mas Axis by Diminazene ameliorates Alzheimer's disease in the d-galactose-ovariectomized rat model: role of PI3K/Akt pathway[J]. Mol Neurobiol, 2018, 55(10):8188-8202. [百度学术]

52
Evans CE, Miners JS, Piva G, et al. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer's disease[J]. Acta Neuropathol, 2020, 139(3):485-502. [百度学术]

53
Moura SD, Ribeiro MF, Limborco-Filho M, et al. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior[J]. Stress, 2017, 20(2):189-196. [百度学术]

54
Yisireyili M, Uchida Y, Yamamoto K, et al. Angiotensin receptor blocker irbesartan reduces stress-induced intestinal inflammation via AT1a signaling and ACE2-dependent mechanism in mice[J]. Brain Behav Immun, 2018, 69:167-179. [百度学术]

55
He F, Wu C, Li P, et al. Functions and signaling pathways of amino acids in intestinal inflammation[J]. Biomed Res Int, 2018, 2018:9171905. [百度学术]

http://www.cjpp.net/fileup/HTML/2021-1-181.htm



中枢ANGII 和儿茶酚胺能神经通路 - 大连医科大学学报

http://dlykdx.cnjournals.net/ch/ ... mp;file_no=20040423



华成旅行社  欢迎来电咨询:

电话:03-3833-9823  / 03-5688-1863
FAX :03-3833-9873  / 03-3834-5891

SOFTBANK电话:080-3416-2275   担当:小郭  微信号:08034162275
SOFTBANK电话:090-2172-4325   担当:小于  微信号:TYOSCL4325
SOFTBANK电话:080-3398-4387   担当:小李  微信号:huacheng4387
SOFTBANK电话:080-3523-4388   担当:小何  微信号:huacheng602
SOFTBANK电话:080-3084-4389   担当:小马  微信号:huacheng858

http://www.kaseisyoji.com/forum.php?mod=forumdisplay&fid=10

10AFC776-492E-4055-8EAE-709642B15F82-image002.png (295.02 KB, 下载次数: 25)

10AFC776-492E-4055-8EAE-709642B15F82-image002.png

10AFC776-492E-4055-8EAE-709642B15F82-image001.jpeg (104.38 KB, 下载次数: 27)

10AFC776-492E-4055-8EAE-709642B15F82-image001.jpeg
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关于都市网 | 服务条款 | 开放平台 | 广告服务 | 商务洽谈 | 都市网招聘 | 都市网公益 | 客服中心 | 网站导航 | 版权所有

手机版|小黑屋|Comsenz Inc.  

© 2001-2013 源码论坛 Inc.    Powered by Weekend Design Discuz! X3.2

GMT+8, 2024-11-23 21:41 , Processed in 0.198625 second(s), 20 queries .

快速回复 返回顶部 返回列表