论文标题:Brain charts for the human lifespan
作者:Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., Adler, S., Alexopoulos, G. S., Anagnostou, E., Areces-Gonzalez, A., Astle, D. E., Auyeung, B., Ayub, M., Bae, J., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S. A., Benegal, V., Beyer, F., Blangero, J., Blesa Cábez, M., Boardman, J. P., Borzage, M., Bosch-Bayard, J. F., Bourke, N., Calhoun, V. D., Chakravarty, M. M., Chen, C., Chertavian, C., Chetelat, G., Chong, Y. S., Cole, J. H., Corvin, A., Costantino, M., Courchesne, E., Crivello, F., Cropley, V. L., Crosbie, J., Crossley, N., Delarue, M., Delorme, R., Desrivieres, S., Devenyi, G. A., Di Biase, M. A., Dolan, R., Donald, K. A., Donohoe, G., Dunlop, K., Edwards, A. D., Elison, J. T., Ellis, C. T., Elman, J. A., Eyler, L., Fair, D. A., Feczko, E., Fletcher, P. C., Fonagy, P., Franz, C. E., Galan-Garcia, L., Gholipour, A., Giedd, J., Gilmore, J. H., Glahn, D. C., Goodyer, I. M., Grant, P. E., Groenewold, N. A., Gunning, F. M., Gur, R. E., Gur, R. C., Hammill, C. F., Hansson, O., Hedden, T., Heinz, A., Henson, R. N., Heuer, K., Hoare, J., Holla, B., Holmes, A. J., Holt, R., Huang, H., Im, K., Ipser, J., Jack, C. R., Jackowski, A. P., Jia, T., Johnson, K. A., Jones, P. B., Jones, D. T., Kahn, R. S., Karlsson, H., Karlsson, L., Kawashima, R., Kelley, E. A., Kern, S., Kim, K. W., Kitzbichler, M. G., Kremen, W. S., Lalonde, F., Landeau, B., Lee, S., Lerch, J., Lewis, J. D., Li, J., Liao, W., Liston, C., Lombardo, M. V., Lv, J., Lynch, C., Mallard, T. T., Marcelis, M., Markello, R. D., Mathias, S. R., Mazoyer, B., McGuire, P., Meaney, M. J., Mechelli, A., Medic, N., Misic, B., Morgan, S. E., Mothersill, D., Nigg, J., Ong, M. Q. W., Ortinau, C., Ossenkoppele, R., Ouyang, M., Palaniyappan, L., Paly, L., Pan, P. M., Pantelis, C., Park, M. M., Paus, T., Pausova, Z., Paz-Linares, D., Pichet Binette, A., Pierce, K., Qian, X., Qiu, J., Qiu, A., Raznahan, A., Rittman, T., Rodrigue, A., Rollins, C. K., Romero-Garcia, R., Ronan, L., Rosenberg, M. D., Rowitch, D. H., Salum, G. A., Satterthwaite, T. D., Schaare, H. L., Schachar, R. J., Schultz, A. P., Schumann, G., Schöll, M., Sharp, D., Shinohara, R. T., Skoog, I., Smyser, C. D., Sperling, R. A., Stein, D. J., Stolicyn, A., Suckling, J., Sullivan, G., Taki, Y., Thyreau, B., Toro, R., Traut, N., Tsvetanov, K. A., Turk-Browne, N. B., Tuulari, J. J., Tzourio, C., Vachon-Presseau, É., Valdes-Sosa, M. J., Valdes-Sosa, P. A., Valk, S. L., van Amelsvoort, T., Vandekar, S. N., Vasung, L., Victoria, L. W., Villeneuve, S., Villringer, A., Vértes, P. E., Wagstyl, K., Wang, Y. S., Warfield, S. K., Warrier, V., Westman, E., Westwater, M. L., Whalley, H. C., Witte, A. V., Yang, N., Yeo, B., Yun, H., Zalesky, A., Zar, H. J., Zettergren, A., Zhou, J. H., Ziauddeen, H., Zugman, A., Zuo, X. N., Bullmore, E. T., Alexander-Bloch, A. F.
期刊:Nature
发表时间:2022/04/06
数字识别码:10.1038/s41586-022-04554-y
摘要:Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight1. Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data (http://www.brainchart.io/). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones3, showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
2022年4月6日,英国剑桥大学R. A. I. Bethlehem研究组以及美国宾夕法尼亚大学J. Seidlitz研究组合作在Nature上发表了文章Brain charts for the human lifespan,汇集了一个交互式开放资源名为脑图(Brain Charts),从而对当前已有的或者未来可能进行核磁共振数据样本进行标准化(http://www.brainchart.io/),对受孕后115天到100岁的全年龄参与者123,984次核磁共振扫描进行各种数据进行量化,揭开大脑结构的变化的非线性轨迹和变化率,对大脑神经发育的里程碑事件进行定义,同时通过对患者的非典型大脑结构进行标准化测量,揭示出了神经和精神疾病的神经解剖变异模式,促进脑图个体差异标准量化更进一步。
首先作者们对多个核磁共振的数据库(图1)进行了位置、比例以及形状的广义相加模型(Generalized additive models for location, scale and shape,GAMLSS)【1-2】计算,可以全年龄段非线性的相关趋势进行优化和研究。具体来说,作者们使用GAMLSS模型与对照组受试者大脑四种主要组织皮层总灰质体积、白质总体积、皮层下总灰质体积和脑室脑脊液总体积的结构性核磁共振数据进行了拟合。这一脑图的创建过程还结合了图像质量控制、专家的视觉管理和图像质量指标、模拟的稳定性和稳健型、非成像指标的表型验证、补充研究等。结果发现皮层总灰质体积在妊娠中期开始强劲增长,在6岁左右达到峰值,随后呈现线性下降的趋势,这一年龄段所确认的时间比以前的研究晚了2-3岁,以更严格的方式对皮层总灰质的生长趋势进行了刻画。白质总体积从妊娠中期到幼儿期迅速生长,在28.7岁的时候达到峰值,50岁后开始下降。
1. Stasinopoulos, D. & Rigby, R. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007)
2. 24. Borghi, E. et al. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat. Med. 25, 247–265 (2006).