ZHAO Zuoshun, LIU Baolin. Effect of temperature on the lifespan of organisms[J]. Journal of University of Shanghai for Science and Technology, 2020, 42(6): 543-549.
摘要: 综述了温度对生命体寿命的作用,包括温度参与调节特定基因表达和细胞信号传导通路,温度对能量代谢、氧化还原水平、免疫功能和热量限制的影响。介绍了一种将温度系数引入死亡率定律的假设,以此计算温度与寿命之间的关系,为探究温度对寿命的直接影响提供参考和依据。
关键词: 温度 衰老 延长寿命 基因表达 生化反应
Effect of temperature on the lifespan of organisms
ZHAO Zuoshunzzs1029404847@163.com, LIU BaolinCorresponding authorblliuk@163.com
Abstract: The effects of temperature on the lifespan of living organisms were reviewed, including the temperature regulating specific gene expression and cell signaling pathways, as well as the effects of temperature on energy metabolism, redox levels, immune function, and caloric restriction. A hypothesis of introducing a temperature coefficient into the law of mortality was presented to calculate the relationship between temperature and lifespan, which provides a reference and basis for exploring the direct influence of temperature on lifespan.
Key words: temperature aging life-extension gene expression biochemical reaction
衰老是生命体的内在固有过程,是对外源因素和内源因素的处理和反应,衰老损伤体内分子和细胞的功能和结构,最终导致疾病或死亡。衰老的特征在于生理功能受损并逐渐丧失,无法维持生命体内环境稳态(homeostasis)。衰老也是导致许多疾病的主要因素,包括癌症、心血管疾病、糖尿病及神经退行性疾病等[1]。生命速率理论(rate-of-living theory)常被用于解释温度对寿命的影响[2],即低温减慢了生化反应速率,从而减缓衰老的进行,而高温则加速衰老。由阿伦尼乌斯方程k=Aexp(-Ea/(RT))可以知道,生化反应速率常数k随着温度T的降低而下降,体温降低可以减少生命体正常生化反应中有毒物质生成,减少这类物质积累引起的各类损伤,进而延缓衰老[3]。A表示指前因子,Ea表示表观活化能,R表示摩尔气体常数。温度是生物系统的基本特性,许多物种的研究都将温度与衰老、寿命联系起来。早期的研究主要集中于变温动物,因为,变温动物的体温会随着环境温度变化,一个世纪前的研究证明了果蝇的寿命与温度呈负相关[4]。针对恒温动物的研究表明,其可以依据环境温度的变化而调节自身产热,使体温稳定在一个狭窄的范围内。Ames侏儒小鼠的寿命比野生型长1年左右,可能因为其体温较低[5]。恒温动物摄入较少卡路里热量时,则体温也降低,这一现象常被用来研究核心体温对寿命的影响[6]。自从上述温度与寿命关系的早期开创性研究以来,随着该领域研究的不断发展,近期研究的模型已经扩展到其他物种,并探讨了延长寿命的影响因素之间的关系。
UCP表达上调时引起的ROS产生减少,可能是较低体温和长寿之间相关性的因素之一。传统的自由基衰老学说(the free radical theory of aging)认为氧化应激损伤细胞,当这种氧化损伤积累到体内稳态无法修复时,就会引起衰老。然而,在线虫实验中发现[41],幼虫阶段经历的高温暴露反而延长了寿命,这可能是因为高温引起的氧化应激在幼虫中积累了高水平的抗氧化物质。因此,尚不清楚ROS诱导的损伤是否是衰老的主要原因。啮齿动物实验发现[42],在低温环境中蒙古沙鼠不同器官中的抗氧化防御能力和氧化损伤有显著差异。随着年龄的增大,ROS会提高某些疾病的发病率,原因可能是随着衰老的进行,生物的氧化还原应激反应能力降低,包括产生适量ROS激活细胞信号通路的能力、激活抗氧化系统维持氧化还原平衡的能力和降解氧化损伤蛋白的能力,生物无法将体内的氧化还原水平维持稳态[43]。
图 2 热量限制与体温之间的关系及其对寿命的影响
Fig. 2 Relationship between caloric restriction and body temperature and their influence on longevity
2.5 温度与死亡率
人类死亡率基本符合1825年Benjamin Gompertz提出的指数公式,这个指数公式被称为Gompertz的“死亡率定律”:婴儿时期具有较高的死亡率,随着年龄增长死亡率下降,直到10~15岁时死亡率降至最低点。之后,死亡率急剧增加,每10年死亡率都会翻倍。这个趋势将会一直持续到80岁。但因为温度不是Gompertz函数的变量或参数,所以,死亡率定律不能预测温度对寿命的影响,可以通过引入一个假设的活化能E1来解决这个问题[3]。假设活化能El是保护生命体内重要的化学物质免受自生或其他分子损害的能量,并且E1与一个重要的分子单位的数量成正比,这个分子单位随时间线性减少。这个分子单位没有被确定,目前端粒是最好的选择。
参考文献
[1]
LÓPEZ-OTÍN C, BLASCO M A, PARTRIDGE L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217. DOI:10.1016/j.cell.2013.05.039 https://www.cell.com/cell/fullte ... 54%3Fshowall%3Dtrue
[2]
REDMAN L M, MARTIN C K, WILLIAMSON D A, et al. Effect of caloric restriction in non-obese humans on physiological, psychological and behavioral outcomes[J]. Physiology & Behavior, 2008, 94(5): 643-648.
[3]
LIU X P. Life equations for the senescence process[J]. Biochemistry and Biophysics Reports, 2015, 4: 228-233. DOI:10.1016/j.bbrep.2015.09.020
[4]
LOEB J, NORTHROP J H. Is there a temperature coefficient for the duration of life?[J]. Proceedings of the National Academy of Sciences of the United States of America, 1916, 2(8): 456-457. DOI:10.1073/pnas.2.8.456
[5]
BROWN-BORG H M, BORG K E, MELISKA C J, et al. Dwarf mice and the ageing process[J]. Nature, 1996, 384(6604): 33.
[6]
RIKKE B A, JOHNSON T E. Lower body temperature as a potential mechanism of life extension in homeotherms[J]. Experimental Gerontology, 2004, 39(6): 927-930. DOI:10.1016/j.exger.2004.03.020
[7]
CONTI B. Considerations on temperature, longevity and aging[J]. Cellular and Molecular Life Sciences, 2008, 65(11): 1626-1630. DOI:10.1007/s00018-008-7536-1
[8]
CONTI B, HANSEN M. A cool way to live long[J]. Cell, 2013, 152(4): 671-672. DOI:10.1016/j.cell.2013.01.050
[9]
GRIBBLE K E, MORAN B M, JONES S, et al. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature[J]. Experimental Gerontology, 2018, 114: 99-106. DOI:10.1016/j.exger.2018.10.023
[10]
VENKATACHALAM K, MONTELL C. TRP channels[J]. Annual Review of Biochemistry, 2007, 76: 387-417. DOI:10.1146/annurev.biochem.75.103004.142819
[11]
ZHANG B, XIAO R, RONAN E A, et al. Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel [J]. Cell Reports, 2015, 11(9): 1414-1424. DOI:10.1016/j.celrep.2015.04.066
[12]
XIAO R, ZHANG B, DONG Y M, et al. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel [J]. Cell, 2013, 152(4): 806-817. DOI:10.1016/j.cell.2013.01.020
[13]
BARTKE A, DARCY J. GH and ageing: pitfalls and new insights[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2017, 31(1): 113-125.
[14]
BARTKE A. Growth hormone, insulin and aging: the benefits of endocrine defects[J]. Experimental Gerontology, 2011, 46(2/3): 108-111.
[15]
HUNTER W S, CROSON W B, BARTKE A, et al. Low body temperature in long-lived Ames dwarf mice at rest and during stress[J]. Physiology & Behavior, 1999, 67(3): 433-437.
[16]
TABAREAN I, MORRISON B, MARCONDES M C, et al. Hypothalamic and dietary control of temperature-mediated longevity[J]. Ageing Research Reviews, 2010, 9(1): 41-50. DOI:10.1016/j.arr.2009.07.004
[17]
HIGAMI Y, PUGH T D, PAGE G P, et al. Adipose tissue energy metabolism: altered gene expression profile of mice subjected to long-term caloric restriction[J]. The FASEB Journal, 2004, 18(2): 1-26.
[18]
HIGAMI Y, BARGER J L, PAGE G P, et al. Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue[J]. The Journal of Nutrition, 2006, 136(2): 343-352. DOI:10.1093/jn/136.2.343
[19]
VAN VOORHIES W A, WARD S. Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20): 11399-11403. DOI:10.1073/pnas.96.20.11399
[20]
LEISER S F, BEGUN A, KAEBERLEIN M. HIF-1 modulates longevity and healthspan in a temperature-dependent manner[J]. Aging Cell, 2011, 10(2): 318-326. DOI:10.1111/j.1474-9726.2011.00672.x
[21]
LIU R K, WALFORD R L. Increased growth and life-span with lowered ambient temperature in the annual fish, Cynolebias adloffi [J]. Nature, 1966, 212(5067): 1277-1278. DOI:10.1038/2121277a0 https://www.nature.com/articles/2121277a0
[22]
LIU R K, WALFORD R L. Mid-life temperature-transfer effects on life-span of annual fish[J]. Journal of Gerontology, 1975, 30(2): 129-131. DOI:10.1093/geronj/30.2.129
[23]
HSU C Y, CHIU Y C. Ambient temperature influences aging in an annual fish (Nothobranchius rachovii) [J]. Aging Cell, 2009, 8(6): 726-737. DOI:10.1111/j.1474-9726.2009.00525.x
[24]
ZHANG L X, LU X. Amphibians live longer at higher altitudes but not at higher latitudes[J]. Biological Journal of the Linnean Society, 2012, 106(3): 623-632. DOI:10.1111/j.1095-8312.2012.01876.x
[25]
FLOURIS A D, SAKELLARIOU G, SPIROPOULOS G, et al. Human intrauterine growth and early development are associated with the seasons of conception and birth[J]. European Heart Journal Supplements, 2005, 26: 682. DOI:10.1093/eurheartj/ehi094
[26]
FLOURIS A D, SPIROPOULOS Y, SAKELLARIOU G J, et al. Effect of seasonal programming on fetal development and longevity: links with environmental temperature[J]. American Journal of Human Biology, 2009, 21(2): 214-216. DOI:10.1002/ajhb.20818
[27]
FLOREZ-DUQUET M, HORWITZ B A, MCDONALD R B. Cellular proliferation and UCP content in brown adipose tissue of cold-exposed aging Fischer 344 rats[J]. The American Journal of Physiology, 1998, 274(1): R196-R203.
[28]
JANSKÝ L, POSPÍŠILOVÁ D, HONZOVÁ S, et al. Immune system of cold-exposed and cold-adapted humans[J]. European Journal of Applied Physiology and Occupational Physiology, 1996, 72(5/6): 445-450.
[29]
PAGLIA D E, WALFORD R L. Atypical hematological response to combined calorie restriction and chronic hypoxia in Biosphere 2 crew: a possible link to latent features of hibernation capacity[J]. Habitation, 2005, 10(2): 79-85. DOI:10.3727/154296605774791223
[30]
ANDERSON R M, WEINDRUCH R. Calorie restriction: progress during mid-2005 —mid-2006[J]. Experimental Gerontology, 2006, 41(12): 1247-1249. DOI:10.1016/j.exger.2006.10.019
[31]
CONTI B, SANCHEZ-ALAVEZ B, WINSKY-SOMMERER R, et al. Transgenic mice with a reduced core body temperature have an increased life span[J]. Science, 2006, 314(5800): 825-828. DOI:10.1126/science.1132191 https://www.science.org/doi/10.1126/science.1132191
[32]
PEARL R. The rate of living[M]. London: University of London Press, 1928.
[33]
HAYFLICK L. Biological aging is no longer an unsolved problem[J]. Annals of the New York Academy of Sciences, 2007, 1100: 1-13. DOI:10.1196/annals.1395.001
[34]
MUNCH S B, SALINAS S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(33): 13860-13864. DOI:10.1073/pnas.0900300106 https://www.pnas.org/content/106/33/13860
[35]
VAANHOLT L M, DAAN S, SCHUBERT K A, et al. Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice[J]. Physiological and Biochemical Zoology, 2009, 82(4): 314-324. DOI:10.1086/589727
[36]
VACHHARAJANI V, GRANGER D N. Adipose tissue: a motor for the inflammation associated with obesity[J]. IUBMB Life, 2009, 61(4): 424-430. DOI:10.1002/iub.169
[37]
GUTIERREZ D A, PUGLISI M J, HASTY A H. Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia[J]. Current Diabetes Reports, 2009, 9(1): 26-32. DOI:10.1007/s11892-009-0006-9
[38]
JASTROCH M, WITHERS K W, TAUDIEN S, et al. Marsupial uncoupling protein 1 sheds light on the evolution of mammalian nonshivering thermogenesis[J]. Physiological Genomics, 2008, 32(2): 161-169. DOI:10.1152/physiolgenomics.00183.2007
[39]
ANDREWS Z B, HORVATH T L. Uncoupling protein-2 regulates lifespan in mice[J]. American Journal of Physiological Endocrinology and Metabolism, 2009, 296(4): E621-E627. DOI:10.1152/ajpendo.90903.2008
[40]
FREEMAN K B, HEFFERNAN M, DHALLA Z, et al. Effects of exposure temperature on brown adipose tissue uncoupling protein mRNA levels[J]. Biochemistry and Cell Biology, 1998, 67(2/3): 147-151.
[41]
HENDERSON D, HUEBNER C, MARKOWITZ M, et al. Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin? [J]. Redox Biology, 2018, 14: 386-390. DOI:10.1016/j.redox.2017.10.003
[42]
XU D L, XU M M, WANG D H. Effects of air temperatures on antioxidant defense and immunity in Mongolian gerbils[J]. Journal of Thermal Biology, 2019, 84: 111-120. DOI:10.1016/j.jtherbio.2019.06.008
[43]
MENG J, LV Z Y, QIAO X H, et al. The decay of Redox-stress Response Capacity is a substantive characteristic of aging: Revising the redox theory of aging[J]. Redox Biology, 2017, 11: 365-374. DOI:10.1016/j.redox.2016.12.026
[44]
GOUNDASHEVA D, ANDONOVA M, IVANOV V. Changes in some parameters of the immune response in rats after cold stress[J]. Journal of Veterinary Medicine, Series B, 1994, 41(1/10): 670-674.
[45]
WON S J, LIN M T. Thermal stresses reduce natural killer cell cytotoxicity[J]. Journal of Applied Physiology, 1995, 79(3): 732-737. DOI:10.1152/jappl.1995.79.3.732
[46]
WALSH N P, WHITHAM M. Exercising in environmental extremes: a greater threat to immune function?[J]. Sports Medicine, 2006, 36(11): 941-976. DOI:10.2165/00007256-200636110-00003
[47]
MASORO E J. Role of hormesis in life extension by caloric restriction[J]. Dose-Response, 2007, 5(2): 163-173.
[48]
MARTINS I J. Regulation of core body temperature and the immune system determines species longevity[J]. Current Updates in Gerontology, 2017, 1: 6.1.
[49]
YANG H, YOUM Y H, NAKATA C, et al. Chronic caloric restriction induces forestomach hypertrophy with enhanced ghrelin levels during aging[J]. Peptides, 2007, 28(10): 1931-1936. DOI:10.1016/j.peptides.2007.07.030
[50]
FONTANA L. Neuroendocrine factors in the regulation of inflammation: excessive adiposity and calorie restriction[J]. Experimental Gerontology, 2009, 44(1/2): 41-45.
[51]
KOIZUMI A, WADA Y, TUSKADA M, et al. A tumor preventive effect of dietary restriction is antagonized by a high housing temperature through deprivation of torpor[J]. Mechanisms of Ageing and Development, 1996, 92(1): 67-82. DOI:10.1016/S0047-6374(96)01803-9
[52]
BLACKBURN E H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions[J]. FEBS Letters, 2005, 579(4): 859-862. DOI:10.1016/j.febslet.2004.11.036
[53]
LIN J, EPEL E, BLACKBURN E. Telomeres and lifestyle factors: roles in cellular aging[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 730(1/2): 85-89.
[54]
LOEB J, NORTHROP J H. On the influence of food and temperature upon the duration of life[J]. Journal of Biological Chemistry, 1917, 32: 103-121. DOI:10.1016/S0021-9258(18)86663-7
[55]
KELLY M A, ZIEBA A P, BUTTEMER W A, et al. Effect of temperature on the rate of ageing: an experimental study of the blowfly Calliphora stygia [J]. PLoS One, 2013, 8(9): e73781. DOI:10.1371/journal.pone.0073781