为了改善复杂转移性癌症患者的诊断,日前,一篇发表在国际杂志Nature上题为“AI-based pathology predicts origins for cancers of unknown primary”的研究报告中,来自哈佛医学院等机构的科学家们通过研究开发出了一种人工智能系统,其能利用常规获得的组织学切片来准确寻找转移性肿瘤的起源,同时还能产生一种“鉴别诊断”策略,用于对原发性不明癌症患者进行诊断。
研究人员所开发的这种基于深度学习的算法被称之为TOAD 算法(基于深度学习的肿瘤起源评估,Tumor Origin Assessment via Deep Learning)能同时识别肿瘤到底是原发性的还是转移性的,还能预测其起源的位点。研究人员利用来自超过2.2万名癌症病例的肿瘤千兆像素病例学全切片来训练这种模型,随后在大约6500个已知的原发病例中检测TOAD算法,并分析越来越复杂的转移性癌症病例,以此来建立针对原发不明癌症的人工智能模型。对于已知原发性起源的肿瘤而言,该模型能准确地在83%的时间里正确识别癌症,并在96%的时间里将诊断列入前三名的预测结果中。随后研究人员在317例原发不明癌症病例中检测了该模型,并对病例进行了鉴别诊断,结果发现,TOAD诊断在61%的时间里与病理学家的报告一致,在82%的病例中与前三名预测结果一致。