药物本是用于治疗很多患者,但是一些患者遭受这些药物的毒副作用。在一项新的研究中,来自美国耶鲁大学的研究人员给出了一种令人吃惊的解释---肠道微生物组(gut microbiome)。他们描述了肠道中的细菌如何能够将三种药物转化为有害的化合物。相关研究结果发表在2019年2月8日的Science期刊上,论文标题为“Separating host and microbiome contributions to drug pharmacokinetics and toxicity”。论文通讯作者为耶鲁大学微生物科学研究所的Andrew Goodman。论文第一作者为Goodman实验室的博士后研究员Michael Zimmermann和Maria Zimmermann-Kogadeeva。
在一项新的研究中,来自美国、巴西和尼加拉瓜的研究人员通过追踪了生活在位于巴西2015年寨卡病毒疫情爆发的核心地区的贫困社区的将近1500人,发现人们对登革热病毒的免疫力越高,他们遭受寨卡病毒感染的风险就越低。他们还提供证据表明巴西的寨卡病毒疫情已基本上消失了,这是因为足够多的人获得了免疫力,从而降低了这种病毒传播的效率。相关研究结果发表在2019年2月8日的Science期刊上,论文标题为“Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region”。论文通讯作者为美国佛罗里达大学的Derek A. T. Cummings博士和美国耶鲁大学公共卫生学院的Albert I. Ko博士。
在一项新的研究中,来自美国麻省理工学院和丹麦诺和诺德公司的研究人员开发出一种可用于递送口服型胰岛素的药物胶囊,从而有可能取代2型糖尿病患者每天必须对自己进行的胰岛素注射。这种药物胶囊大概有蓝莓那么大,内含一根由压缩胰岛素制成的小针。在这种药物胶囊到达胃部后,通过这根小针进行胰岛素注射。在动物试验中,他们证实他们能够递送足够多的胰岛素,由此降低下来的血糖水平与通过皮肤注射降低到的血糖水平相当。他们还证实这种药物胶囊还能够适用于递送其他的蛋白药物。相关研究结果发表在2019年2月8日的Science期刊上,论文标题为“An ingestible self-orienting system for oral delivery of macromolecules”。论文通讯作者为麻省理工学院的Robert Langer博士和Giovanni Traverso博士。论文第一作者为麻省理工学院研究生Alex Abramson。
癌症科学家Tak Mak博士以克隆人T细胞受体(TCR)而闻名。在一项新的研究中,Mak博士及其团队证实免疫细胞能够产生对抗感染的大脑化学物。这首个功能验证的发现解决了一个多世纪以来科学家们一直在思考的一个难题。相关研究结果发表在2019年2月8日的Science期刊上,论文标题为“Choline acetyltransferase–expressing T cells are required to control chronic viral infection”。
这些研究人员试图寻找能够触发转移性肿瘤细胞在代谢上适应使用脂肪酸作为能量来源的细胞内信号。通过广泛的筛选和分析,他们确定了蛋白YAP(yes-associated protein)是刺激淋巴结中转移性肿瘤细胞发生脂肪酸氧化的关键驱动分子。论文通讯作者Gou Young Koh博士说,“我们很幸运地发现这种不寻常的代谢适应与淋巴结转移性癌细胞中的YAP活化之间存在关联性。在黑色素瘤患者的转移性淋巴结中也发现了YAP活化。”
免疫系统能够识别纳米和微米大小的颗粒(比如病毒和细菌)并对它们作出反应。纳米颗粒经输入淋巴被运送到淋巴组织中,经内化和加工后用于树突细胞的抗原呈递,并且通过B细胞受体(BCR)的结合激活B细胞。免疫识别的这些特征促进人们将纳米颗粒抗原用于许可的疫苗中,比如HPV疫苗和乙肝病毒疫苗,并且在开发新疫苗时促进人们设计纳米颗粒形式的免疫原。对HIV病毒而言,来自临床前动物模型的证据表明相比于单体抗原,纳米颗粒HIV免疫原能够更加高效地激活低亲和力的生殖系前体B细胞,促进增强的滤泡辅助T细胞(follicular helper T cell, Tfh)诱导和生发中心反应,并且促进诱导中和抗体反应。然而,人们对这种适应性免疫受到免疫原的物理形式影响的机制仍然知之甚少。
在一项新的研究中,来自美国麻省理工学院等多家研究机构的研究人员比较了两种不同的发生高度糖基化的HIV抗原---一种源自gp120的小蛋白和一种较大的保持稳定的包膜蛋白(Env)三聚体---在以蛋白纳米颗粒形式或者以游离形式存在时在初次免疫后的命运。不同于单体抗原的是,纳米颗粒抗原被快速地运送到滤泡树突细胞(follicular dendritic cell, FDC)网络,随后以依赖于补体、甘露糖结合凝集素(mannose-binding lectin, MBL)和免疫原聚糖(immunogen glycan)的形式聚集在生发中心。相关研究结果于2018年12月20日在线发表在Science期刊上,论文标题为“Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers”。论文通讯作者为麻省理工学院的Darrell J. Irvine和斯克里普斯研究所的William R. Schief。