在一项新的研究中,来自冰岛基因解码公司(deCODE genetics)、冰岛大学和雷克雅未克大学的研究人员发布了首个使用全基因组序列数据开发出来的全分辨率人类基因组遗传图谱。该图谱提供了迄今为止关于人类进化的两个关键驱动因素之间的位置、速率和关联性的 最详细观察:重组(recombination)---在卵子和精子形成中发生的基因组重组;并且新发突变(de novo mutation)---在我们的每个基因组中出现了几十个通常很小的变异,而且我们没有从父母那里遗传这些变异。这些过程共同确保每个人都是我们物种的独特版本, 不过新发突变也是儿童罕见疾病的主要原因。相关研究结果发表在2019年1月25日的Science期刊上,论文标题为“Characterizing mutagenic effects of recombination through a sequence-level genetic map”。
睡眠不佳长期以来与阿尔茨海默病(Alzheimer's disease)有关,但是人们对睡眠中断如何促进这种疾病知之甚少。如今,在一项新的研究中,通过研究小鼠和人类,来自美国华盛顿大学圣路易斯医学院的研究人员发现睡眠剥夺增加了阿尔茨海默病关键蛋白tau的水平。在对小鼠进行的后续研究中,他们发现失眠加快毒性的tau蛋白团块在大脑中扩散---这是大脑损伤的前兆,也是痴呆症产生的一个决定性步骤。这些发现表明睡眠不足有助于促进这种疾病产生,并且提示着良好的睡眠习惯可能有助于保持大脑健康。相关研究结果于2019年1月24日在线发表在Science期刊上,论文标题为“The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans”。
在一项新的研究中,来自英国剑桥大学医学研究委员会分子生物学实验室的研究人员发现星形胶质细胞,即包围并支持大脑神经元的“看护”细胞,在昼夜节律(即身体24小时的生物钟)中起着比之前理解的更重要的作用。星形胶质细胞之前被认为仅是支持调节昼夜节律的神经元,但是这项新的研究指出它们实际上能够引导这种体内生物钟的节奏,并且首次证实它们能够控制哺乳动物日常行为的模式。相关研究结果发表在2019年1月11日的Science期刊上,论文标题为“Cell-autonomous clock of astrocytes drives circadian behavior in mammals”。
在一项新的研究中,来自美国、尼日利亚、英国、德国、比利时、瑞士和新加坡的研究人员发现,随着病毒疫情的爆发,利用便携式DNA测序仪了解关于这种病毒疫情的更多信息是可能的。在他们发表在2019年1月4日那期Science期刊上的一篇标题为“Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak”的论文中,他们描述了他们对在尼日利亚最近发生的一次病毒疫情期间受影响的患者中的拉沙病毒(Lassa virus)DNA的分析,以及他们取得的发现。美国波士顿大学医学院的Nahid Bhadelia针对这项新的研究在同期Science期刊上发表了一篇标题为“Understanding Lassa fever”的观点(Perspective)类型论文。
图片来自Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany。
在一项新的研究中,来自美国麻省理工学院、麻省总医院、布罗德研究所和哈佛医学院和佛蒙特大学的研究人员报道倒位子存在于各种细菌中,证实它们促进细胞产生抗生素耐药性,并指出它们可能有助于细菌适应和定植于新的宿主。相关研究结果发表在2019年1月11日的Science期刊上,论文标题为“Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut”。
到目前为止,人们尚不清楚这种DNA包装如何影响早期胚胎的发育。在一项新的研究中,来自美国宾夕法尼亚大学佩雷尔曼医学院的研究人员发现在小鼠胚胎---受精后仅8天大---中,基因组中的紧凑包装区域在蛋白编码基因上增加了。在这种细胞分化阶段几天后,这些 紧密包装的基因组区域松散开来,从而允许某些基因被读取和产生相应的蛋白。相关研究结果于2019年1月4日在线发表在Science期刊上,论文标题为“H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification”。
免疫系统能够识别纳米和微米大小的颗粒(比如病毒和细菌)并对它们作出反应。纳米颗粒经输入淋巴被运送到淋巴组织中,经内化和加工后用于树突细胞的抗原呈递,并且通过B细胞受体(BCR)的结合激活B细胞。免疫识别的这些特征促进人们将纳米颗粒抗原用于许可的疫苗中,比如HPV疫苗和乙肝病毒疫苗,并且在开发新疫苗时促进人们设计纳米颗粒形式的免疫原。对HIV病毒而言,来自临床前动物模型的证据表明相比于单体抗原,纳米颗粒HIV免疫原能够更加高效地激活低亲和力的生殖系前体B细胞,促进增强的滤泡辅助T细胞(follicular helper T cell, Tfh)诱导和生发中心反应,并且促进诱导中和抗体反应。然而,人们对这种适应性免疫受到免疫原的物理形式影响的机制仍然知之甚少。
在一项新的研究中,来自美国麻省理工学院等多家研究机构的研究人员比较了两种不同的发生高度糖基化的HIV抗原---一种源自gp120的小蛋白和一种较大的保持稳定的包膜蛋白(Env)三聚体---在以蛋白纳米颗粒形式或者以游离形式存在时在初次免疫后的命运。不同于单体抗原的是,纳米颗粒抗原被快速地运送到滤泡树突细胞(follicular dendritic cell, FDC)网络,随后以依赖于补体、甘露糖结合凝集素(mannose-binding lectin, MBL)和免疫原聚糖(immunogen glycan)的形式聚集在生发中心。相关研究结果于2018年12月20日在线发表在Science期刊上,论文标题为“Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers”。论文通讯作者为麻省理工学院的Darrell J. Irvine和斯克里普斯研究所的William R. Schief。