摘要 天文学是一门以观测为基础的学科,其发展主要依靠观测和数据的支持。基于SAO/NASA Astrophysics Data System天文物理学数据系统中高被引文章并结合热点新闻报道,回顾了2018年天文学热点的进展和发现,将2018年天文学研究热点分为观测和基础研究、仪器研制及工具开发两大方面论述。
关键词 Gaia卫星;引力波;中微子
Top astronomy events in 2018
QIAN Lei
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
Abstract Astronomy is a science based on observation. Its development relies on the observation and data analysis. The top astronomy events in 2018 were divided into the basic research and the development of instruments and tools. The top events were selected by referring to the high citation papers in SAO/NASA Astrophysics Data System (ADS) and hot news.
[1] Gaia Collaboration, Brown A. G. A., Vallenari A., Prusti T. et al. Gaia Data Release 2. Summary of the contents and survey properties [J].Astronomy and Astrophysics, 2018, 616:A1
[2] Bailer-Jones C. A. L., Rybizki J., Fouesneau M. et al. Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 [J]. Astronomical Journal, 2018, 156(2):58
[3] Helmi A., Babusiaux C., Koppelman H. H. et al. The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk [J]. Nature, 2018, 563:85
[4] Bailer-Jones Coryn A. L., Farnocchia Davide, Meech Karen J. et al. Plausible Home Stars of the Interstellar Object ‘Oumuamua Found in Gaia DR2 [J]. Astronomical Journal, 2018, 156(5):205
[5] Scholz R.-D., Meusinger H., Schwope A. et al. Spectroscopic classification and Gaia DR2 parallaxes of new nearby white dwarfs among selected blue proper motion stars [J]. Astronomy and Astrophysics, 2018, 619:A31
[6] Joyce S. R. G., Barstow M. A., Casewell, S. L. et al. Testing the white dwarf mass-radius relation and comparing optical and far-UV spectroscopic results with Gaia DR2, HST, and FUSE [J]. Monthly Notices of the Royal Astronomical Society, 2018, 479(2):1612
[7] Bianchini P., van der Marel R. P., del Pino, A. et al. The internal rotation of globular clusters revealed by Gaia DR2 [J]. Monthly Notices of the Royal Astronomical Society, 2018, 481(2):2125
[8] Baumgardt H., Hilker M., Sollima A. et al. Mean proper motions, space orbits, and velocity dispersion profiles of Galactic globular clusters derived from Gaia DR2 data [J]. Monthly Notices of the Royal Astronomical Society, 2019, 482(4):5138
[9] Marchetti T., Rossi E. M., Brown A. G. A. Gaia DR2 in 6D: Searching for the fastest stars in the Galaxy [J]. Monthly Notices of the Royal Astronomical Society, 2018, Advance Access
[10] Jennings Ross J., Kaplan David L., Chatterjee Shami et al. Binary Pulsar Distances and Velocities from Gaia Data Release 2 [J]. Astrophysical Journal, 2018, 864(1):26
[11] The LIGO Scientific Collaboration; the Virgo Collaboration GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. 2018, arXiv:1811.12907
[12] Mooley K. P., Nakar E., Hotokezaka K. et al. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817 [J]. Nature, 2018, 554:207
[13] Abbott B. P., Abbott R., Abbott T. D. et al. GW170817: Measurements of Neutron Star Radii and Equation of State [J]. Physical Review Letters, 2018, 121:161101
[14] Radice David, Perego Albino, Zappa Francesco et al. GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations [J]. Astrophysical Journal Letters, 2018, 852(2)29
[15] Boran S., Desai S., Kahya E. O. et al. GW170817 falsifies dark matter emulators [J]. Physical Review D, 2018, 97:041501
[16] IceCube Collaboration, Aartsen M. G., Ackermann M., Adams J. et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A [J]. Science, 2018, 361:1378
[17] Ellis John, Mavromatos Nikolaos E., Sakharov Alexander S. et al. Limits on Neutrino Lorentz Violation from Multimessenger Observations of TXS 0506+056. 2018, arXiv:1807.05155
[18] Chen, Xuelei, Miralda-Escudé, Jordi, The Spin-Kinetic Temperature Coupling and the Heating Rate due to Lyα Scattering before Reionization: Predictions for 21 Centimeter Emission and Absorption [J]. Astrophysical Journal, 2004, 602(1):1
[19] Bowman Judd D., Rogers Alan E. E., Monsalve Raul A. et al. An absorption profile centred at 78 megahertz in the sky-averaged spectrum [J]. Nature, 2018, 555:67
[20] Abbott T. M. C., Abdalla F. B., Allam S. et al. The Dark Energy Survey: Data Release 1 [J]. Astrophysical Journal Supplement Series, 2018, 239(2):18
[21] Li W., Wang X., Vinkó J. et al. Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations. 2018, arXiv:1811.10056
[22] Dimitriadis G., Foley R. J., Rest A. et al. K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type Ia Supernova. 2018, arXiv: :1811.10061
[25] Keppler M., Benisty M., Müller A. et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 [J]. Astronomy and Astrophysics, 2018, 617:A44
[31] The Astropy Collaboration, Price-Whelan A. M., Sipőcz B. M., Günther H. M. et al. The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package [J]. Astronomical Journal, 2018, 156:123