在一项新的研究中,来自美国阿拉巴马大学伯明翰分校、哈森阿尔法生物技术研究所、麻省总医院、哈佛医学院和辛辛那提儿童医院的研究人员详细介绍了一种为产生两种主要的效应细胞亚群--- Tfh细胞和非Tfh细胞---的命运决定作好准备的机制。相关研究结果发表在 2018年9月14日的Science期刊上,论文标题为“Differential IL-2 expression defines developmental fates of follicular versus nonfollicular helper T cells”。
这两种类型的细胞均由在淋巴结中表达表面标志物CD4的初始T细胞(naïve T cell)发育而来。当激活信号指出体内其他部位遭受感染时,这些初始T细胞经诱导后发育成Tfh细胞或三种类型的非Tfh细胞---Th1、Th2或Th17细胞---之一。
在一项新的研究中,来自德国凯泽斯劳滕大学、以色列魏茨曼科学研究所和瑞士巴塞尔大学的研究人员发现新合成的蛋白到达细胞中各自靶区室的一种新机制。旨在运送到线粒体中的蛋白并不会被直接运送到线粒体中,而是先被引导到内质网的表面上,在那里,它们沿 着内质网的表面“冲浪”。这种机制让新合成的蛋白保持运送能力,并且可能阻止它们聚集在一起。蛋白聚集可能是导致阿尔茨海默病和帕金森病等人类疾病的关键问题。相关研究结果发表在2018年9月14日的Science期刊上,论文标题为“An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast”。论文通信作者为凯泽斯劳滕大学线粒体生物学专家Johannes Herrmann教授和魏茨曼科学研究所的Maya Schuldiner。
在一项新的研究中,来自德国马克斯-普朗克医学研究所、海德堡大学儿童医院、瑞士洛桑联邦理工学院和洛桑大学医院的研究人员开发出一种新型生物传感器,它能够利用一滴血准确地定量测试代谢物浓度。这种方法的准确性和简单性可能让它成为一种诊断和监测多种 疾病的首选工具。相关研究结果发表在2018年9月14日的Science期刊上,论文标题为“Semisynthetic sensor proteins enable metabolic assays at the point of care”。论文通信作者为马克斯-普朗克医学研究所的Kai Johnsson教授。
在一项新的研究中,来自美国北卡罗来纳大学的研究人员吃惊地发现在DSB修复期间,核糖核苷酸通常通过哺乳动物NHEJ途径被整合到断裂的DNA末端上,从而增强DSB修复。这一重要的发现证实了将核糖核苷酸短暂地整合到DNA中具有生物学功能,从而挑战了分子生物学 的中心法则。相关研究结果发表在2018年9月14日的Science期刊上,论文标题为“Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining”。
一片叶子因啃食昆虫而遭受损伤的植物能够提醒它的其他叶子开始预期的防御反应。通过研究模型植物拟南芥(Arabidopsis),Toyota等人证实这种系统性信号始于谷氨酸的释放,所释放出的谷氨酸会被谷氨酸受体样离子通道(glutamate receptor–like ion channel)感知到。 然后,这些离子通道引发一系列钙离子浓度的变化,这些变化通过韧皮部脉管系统和被称为胞间连丝(plasmodesmata)的细胞间通道加以传播。这种基于谷氨酸的长距离信号传递是快速的:在几分钟内,未损坏的叶子就能够对远处叶子的命运作出反应。