在一项新的研究中,来自加拿大学健康网络(University Health Network)和多伦多大学等研究机构的研究人员将急性髓细胞性白血病(Acute myeloid leukemia, AML)复发的起源追踪到稀少的治疗抵抗性的白血病干细胞,这些白血病干细胞在疾病确诊时尚未开始化疗之前就已存在于体内。针对这种侵袭性的癌症,他们也从发生疾病复发的不同患者体内鉴定出两种不同的干细胞样(stem-cell like)细胞群体。在此之前,他们已证实这种侵袭性癌症是由骨髓中的造血干细胞开始产生的。这些发现对导致这种疾病复发的干细胞类型提供重要的见解,并且能够有助加快寻找新的前期疗法。相关研究结果于2017年6月28日在线发表在Nature期刊上,论文标题为“Tracing the origins of relapse in acute myeloid leukaemia to stem cells”。论文通信作者为大学健康网络玛嘉烈公主癌症中心高级研究员、多伦多大学分子遗传学系教授John Dick博士。论文第一作者为博士后研究员Liran Shlush博士和科研副助理Amanda Mitchell博士。
每隔48个小时疟原虫都会在红细胞中复制再生,这项研究中研究人员首次通过研究发现,疟原虫的复制率依赖于宿主所消化的卡路里,这或许最终能够指示疟疾感染患者的预后表现情况。研究者Maria M. Mota表示,这项研究改变了我们对疟疾感染动态学变化的理解,同时对于开发有效应对疟疾感染的新型措施提供了新的思路。最初的调查结果让研究者们大吃一惊,曾经有好几个月研究者Mota对疟原虫快速适应宿主的模式表示吃惊。
这些研究人员成功地可视化观察和描述了Cpf1的工作方式。这种蛋白属于Cas家族,能够切割双链DNA,因而允许启动这种基因组修饰过程。相关研究结果发表在2017年6月22日的Nature期刊上,论文标题为“Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage”。论文通信作者为哥本哈根大学研究员Guillermo Montoya和Stefano Stella。
如今,在一项新的研究中,来自美国布罗德研究所等研究机构的研究人员证实这些细胞状态变化在很多癌症初始抵抗治疗攻击的能力中发挥着主导性作用。相关研究结果于2017年7月5日在线发表在Nature期刊上,论文标题为“Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway”。论文通信作者为布罗德研究所联合创始人Stuart L. Schreiber。
在一项新的研究中,来自美国斯克里普斯研究所(TSRI)、沙克生物研究所和康奈尔大学威尔医学院的研究人员首次解析出Env蛋白复合物的原子水平的特写结构图。这种结构图揭示出Env三聚体的不同部分之间发生的复杂构象变化。这些构象变化仅在这种病毒在正常情形下与一个免疫细胞的质膜融合之前发生。这些发现可能为设计HIV疫苗提供潜在的新靶标。相关研究于2017年7月12日在线发表在Nature期刊上,论文标题为“Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike”。
在一项新的研究中,瑞士苏黎世大学的Martin Jinek领导的一个国际研究团队史无前例地发现细菌保护自己免受侵入性病毒攻击的一种新的防御机制。当遭受入侵时,作为细菌免疫系统的CRISPR-Cas系统产生一种化学信号来激活第二种酶,从而协助降解这些入侵者的遗传物质。这一过程非常类似于人先天性免疫系统的一种抗病毒机制。相关研究结果于2017年7月19日在线发表在Nature期刊上,论文标题为“Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers”。
科学家们长期以来就在寻求一种会引起HIV广谱中和抗体(broadly neutralizing antibodies, bNAb)产生的HIV疫苗,这被认为是阻止众多HIV病毒毒株感染的关键。但是这被证实是一项困难的任务;仅大约20%的HIV感染者产生这些抗体。根据一项新的研究,奶牛可能胜任这项任务。相关研究结果于2017年7月20日在线发表在Nature期刊上,论文标题为“Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows”。
在过去几年里,一些人已发现HIV广谱中和抗体往往是比较大的难以控制的蛋白。除了这一发现之外,其他的科学家们碰巧发现奶牛的抗体往往是类似地较大的和难以控制的。论文第一作者、国际艾滋病疫苗计划(International AIDS Vaccine Initiative)抗体发现与开发主任Devin Sok说,“这是通力合作的结果。我们当中有兽医、奶牛抗体科学家和HIV科学家,大家一起讨论和想法解决这个相对简单的问题。”
在2016年,美国哈佛大学医学院威斯生物启发工程研究所(Wyss Institute for Biologically Inspired Engineering)核心研究员George Church博士领导的一个研究团队构建出首个基于CRISPR系统的分子记录器(Science, doi:10.1126/science.aaf1175),这就允许细胞获得按照时间顺序提供的由DNA编码的数字信息,从而在作为细胞模型的细菌基因组中存储它们。这种信息在细菌基因组的CRISPR阵列中存储下来,能够被再次获取和用来构建事件发生的时间表。然而,作为Church团队的一名博士后研究员,Seth Shipman博士说,“尽管这是很有希望的,但是我们并不知道当我们试图一次追踪大约100个序列时会发生什么,或者它是否发挥作用。这是至关重要的,这是因为我们旨在利用这种系统记录复杂的生物学事件,这是我们的最终目标。”
【10】Nature:重磅!破解阿尔茨海默病特征性的tau蛋白纤维结构
doi:10.1038/nature23002
在一项新的研究中,来自英国医学研究委员会(MRC)分子生物学实验室(LMB)和美国印第安纳大学的研究人员首次揭示出导致阿尔茨海默病的两种异常纤维之一的原子结构。理解这些纤维的结构将是开发阻止它们形成的药物的关键。他们认为他们发现的这些纤维结构也可能提示着tau蛋白如何在其他的神经退行性疾病中形成不同的纤维。相关研究结果于2017年7月5日在线发表在Nature期刊上,论文标题为“Cryo-EM structures of tau filaments from Alzheimer’s disease”。论文通信作者为LMB研究员Michel Goedert和Sjors H. W. Scheres。