在本连载中,笔者将尝试用通俗的笔法描述这些生物化学家发现自闭症相关蛋白质的过程,并且对这些自闭症相关蛋白质的最新研究进展做简略的综述。此连载将包括以下内容:甲基化DNA结合蛋白MECP2[methyl CpG binding protein 2 (Rett syndrome)]的神秘使命、突触粘联蛋白neuroligin-neurexin家族走向自闭症研究前沿、泛肽化关键蛋白UBE3A(ubiquitin protein ligase E3A)与天使综合征(Angelman syndrome)和自闭症,以及用果蝇(Drosophila)模式生物研究neuroligin-neurexin家族蛋白的新功能。此连载由4篇通俗综述组成,均由国内活跃在自闭症研究前沿的青年科研工作者撰写,希望为自闭症的基础及临床研究提供有用信息。
一 新蛋白的发现
1992年,英国爱丁堡大学研究DNA甲基化的生物化学家Adrian Bird博士发现了一个新的能与甲基化DNA相结合的蛋白质,这是他发现的第二个能与甲基化DNA结合的蛋白质,于是将其命名为methyl-CpG binding protein 2 (MeCP2)[2]【Lewis et al. 1992】。他在找到这个蛋白质的时候,发现其功能很强大,能与单个被甲基化的DNA碱基相互作用,不过他不曾想到的是大约7年以后,这个神奇的蛋白质居然会被发现与一种严重的遗传病有关,而且会成为人们理解自闭症遗传基础的一把重要的钥匙。
与功成名就的Southern博士比起来,Bird博士当时还只是毛头小子,但他在DNA甲基化修饰领域的一系列研究却已为人瞩目。Bird博士领导的研究组找到了一系列与甲基化DNA相结合的蛋白质。DNA的CpG岛可以被甲基化修饰已经早为人知,但是功能不甚了解。研究者们猜测DNA的甲基化是关闭基因表达的开关,但直到20世纪90年代初,还没有直接证据。Bird博士领导的研究组于1997、1998年接连发表两篇重要文章,发现MeCP2通过与组蛋白去乙酰化复合物直接作用而抑制基因的表达[4,5]【Nan et al. 1997; Nan et al. 1998】。原来如此!DNA本身的甲基化只是一个信号,真正行使抑制基因表达功能的是甲基化DNA蛋白招募来的组蛋白去乙酰化复合物(histone deacetylase complex)。基因启动子位置的组蛋白被去乙酰化作用后使染色体处在紧缩的状态,从而阻碍转录起始复合物的靠近,进而关闭基因的表达。Bird博士的研究组在接下来的工作中发现了一系列的甲基化DNA结合蛋白,将其命名为MBD1~MBD4[6]【Hendrich 1998】。
1975年,刚走入贝鲁特美国大学(The American University of Beirut)医学院就读的年轻的Huda Zoghbi立志成为一名出色的女医生,无奈黎巴嫩内战的战火慢慢蔓延开来。在医学院的第一年,Zoghbi只能躲在女厕所旁边的防空洞里面过夜。那个时候她和同伴目睹了炸弹时常落在校园里,度过了第一个学年后,她还想回去继续学习,但是因为弟弟被弹片击中而受伤,他父母决定送姐弟俩去美国继续学业。Zoghbi得以在美国田纳西州Meharry医学院继续完成医学学位,但是独在异乡的日子很难熬,还好当初在大学里一起躲避炮弹的男同学一直给她写信,这个男生在一年后也来到美国,有情人终成眷属。
2003年的哈佛大学神经生物学系,Michael E. Greenberg博士领导的研究组一直研究在兴奋的神经细胞中基因被诱导表达的分子机制。Greenberg博士因为在20世纪80年代首次发现神经递质乙酰胆碱(acetylcholine)可以诱导极刻早期基因(immediate early gene)c-fos的快速表达而闻名遐迩[9]【Greenberg 1986】。接下来的系列研究发现一些对神经系统有重要功能的基因,例如脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的表达也是可以被神经元的去极化兴奋所诱导表达的[10]【Tao 1998】。
[1] KANNER L. Irrelevant and metaphorical language in early infantile autism. Am J Psychiatry, 1946, 103: 242-246
[2] Lewis JD, Meehan RR, Henzel WJ, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 1992, 69: 905-914
[3] Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol, 1975, 98: 503-517
[4] Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 1997, 88: 471-481
[5] Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393: 386-389
[6] Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol, 1998, 18: 6538-6547
[7] Amir RE, Van den Veyver IB, Wan M, et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 1999, 23: 185-188
[8] Ramocki MB, Peters SU, Tavyev YJ, et al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome.
[10] Tao X, Finkbeiner S, Arnold DB, et al. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 1998, 20: 709-726
[11] Chen RZ, Akbarian S, Tudor M, et al. Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 2001, 27: 327-331
[12] Guy J, Hendrich B, Holmes M, et al. A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 2001, 27: 322-326
[13] Chen WG, Chang Q, Lin Y, et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 2003, 302: 885-889
[14] Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 2003, 302: 890-893
[15] Guy J, Gan J, Selfridge J, et al. Reversal of neurological defects in a mouse model of Rett syndrome. Science, 2007, 315: 1143-1147
[1] 仇子龙. 甲基化DNA结合蛋白MeCP2的神秘使命. 生命的化学, 33(2): 26-30
[2] Scheffner M, Huibregtse JM, Vierstra RD, et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitinprotein ligase in the ubiquitination of p53. Cell, 1993, 75: 495-505
[3] Huibregtse JM, Scheffner M, Howley PM. Cloning and expression of the cDNA for E6-AP, a protein that
mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol Cell Biol, 1993, 13: 775-784
[4] Nakao M, Sutcliffe JS, Durtschi B, et al. Imprinting analysis of three genes in the Prader-Willi/Angelman
region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum Mol Genet, 1994, 3: 309-315
[5] Matsuura T, Sutcliffe JS, Fang P, et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet, 1997, 15: 74-77
[6] Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet, 1997, 15: 70-73
[7] 麻省理工学院生物学开放课程. http://ocw.mit.edu
[8] Jiang YH, Armstrong D, Albrecht U, et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron, 1998, 21: 799-811
[9] Cook EH Jr, Lindgren V, Leventhal BL, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet, 1997, 60: 928-934
[10] Schroer RJ, Phelan MC, Michaelis RC, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet, 1998, 76: 327-336
[11] Chamberlain SJ, Lalande M. Angelman syndrome, a genomic imprinting disorder of the brain. J Neurosci, 2010, 30: 9958-9963
[12] Huang HS, Allen JA, Mabb AM, et al. Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons. Nature, 2011, 481: 185-189